State of the art in acute glaucoma attack predisposition issue
https://doi.org/10.21516/2072-0076-2022-15-2-167-171
Abstract
Angle-closure glaucoma diagnosis verification is based on biometric indicators and computer tomography data of the anterior segment of the eye. However, not every patient with a narrow angle and a shellow anterior chamber develops an acute attack. The review summarizes the literature data on risk factors for an acute glaucoma attack and lists additional parameters to be considered when examining patients with angle-closure glaucoma to identify a predisposition to an acute glaucoma attack.
Keywords
About the Author
N. A. BakuninaRussian Federation
Natalia A. Bakunina, Cand. of Med., ophthalmologist
117049
8, Leninsky Prospeсt
Moscow
References
1. Либман Е. С. Эпидемиологическая характеристика глаукомы / Е. С. Либман // Глаукома. – 2009. – 1: 2–3. [Libman E. S. Epidemiological characteristics of glaucoma. Glaucoma. 2009; 1: 2–3 (in Russian)].
2. Нестеров А. П. Глаукома / А. П. Нестеров. – Москва: Медицина, 1995. [Nesterov A. P. Glaukoma. Мoscow: Medicine; 1995 (in Russian)].
3. Kumar R. S., Tantisevi V., Wong M. H., et al. Plateau iris in Asian subjects with primary angle closure glaucoma. Arch. Ophthalmol. 2009; 127 (10): 1269–72. doi: 10.1001/archophthalmol.2009.241
4. Verma S., Nongpiur M. E., Atalay E., et al. Visual field progression in patients with primary angle-closure glaucoma using pointwise linear regression analysis. Ophthalmology. 2017; 124 (7): 1065–71. https://doi.org/10.1016/j.ophtha.2017.02.027
5. Курышева Н. И. Сравнительное исследование факторов, ассоциированных с прогрессированием первичной открытоугольной и закрытоугольной глаукомы / Н. И. Курышева, Л. В. Лепешкина, Е. О. Шаталова // Вестник офтальмологии. – 2020. – 136 (2): 64–72. [Kurysheva N. I., Lepeshkina L. V., Shatalova E. O. Comparative study of factors associated with the progression of primary open-angle and closed-angle glaucoma. Vestnik oftalmologii. 2020; 136 (2): 64–72 (in Russian)]. URL: https://www.mediasphera.ru/issues/vestnik-oftalmologii/2020/2/10042465X2020021064?ysclid=l5m8aagmrw2138553
6. Terminology and Guidelines for Glaucoma (European Glaucoma Society). 4th ed. Savona: Publi Сomm; 2014.
7. Foster P. J., Buhrmann R., Quigley H. A., Johnson G. J. The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol. 2002; 86 (2): 238–42. https://doi.org/10.1136/bjo.86.2.238
8. Sihota R., Lakshmaiah N. C., Agarwal H. C., Pandey R. M., Titiyal J. S. Ocular parameters in the subgroups of angle closure glaucoma. Clin. Exp. Ophthalmol. 2000; 28 (4): 253–8. doi: 10.1046/j.1442-9071.2000.00324.x
9. Lee J. R., Sung K. R., Han S. Comparison of anterior segment parameters between the acute primary angle closure eye and the fellow eye. Invest. Ophthalmol. Vis. Sci. 2014; 55 (6): 3646–50. doi: 10.1167/iovs.13-13009
10. Lavanya R., Wong T. Y., Friedman D. S., et al. Determinants of angle closure in older Singaporeans. Arch. Ophthalmol. 2008; 126 (5): 686–91. doi: 10.1001/archopht.126.5.686
11. Nongpiur M. E., Ku J. Y., Aung T. Angle closure glaucoma: a mechanistic review. Curr. Opin. Ophthalmol. 2011; 22 (2): 96–101. doi: 10.1097/ICU.0b013e32834372b9
12. Bakunina N. A., Kolesnikova L. N. A study of OCT imaging in acute angle-closure glaucoma eyes treated with phacoemulsification. J. Ophthalmic. Clin. Res. 2017. Available at: http://www.heraldopenaccess.us/openaccess/a-study-of-oct-imaging-in-acute-angle-closure-glaucoma-eyes-treated-with-phacoemulsification (accessed 7 June 2022). doi: 10.24966/OCR-8887/100036
13. Бакунина Н. А. Изменения показателей оптической когерентной томографии после факоэмульсификации при остром приступе закрытоугольной глаукомы / Н. А. Бакунина, Л. Н. Колесникова // Российский офтальмологический журнал. – 2017. – 10 (2): 10–6. [Bakunina N. A., Kolesnikova L. N. Changes of optical coherent tomography parameters after phacoemulsification in acute angle-closure glaucoma. Russian ophthalmological journal. 2017; 10 (2): 10–6 (in Russian)]. URL: https://roj.igb.ru/jour/article/view/87
14. Sakai H., Morine-Shinjyo S., Shinzato M., et al. Uveal effusion in primary angle-closure glaucoma. Ophthalmology. 2005; 112 (3): 413–9. doi: 10.1016/j.ophtha.2004.08.026
15. Huang J., Wang Z., Wu Z., et al. Comparison of ocular biometry between eyes with chronic primary angle-closure glaucoma and their fellow eyes with primary angle-closure or primary angle-closure suspect. J. Glaucoma. 2015; 24 (4): 323–7. doi: 10.1097/IJG.0b013e31829e55cd
16. Yang M. C., Lin K. Y. Drug-induced acute angle-closure glaucoma: A review. J. Curr Glaucoma Pract. 2019; 13 (3): 104–9. doi:10.5005/jp-journals-10078-1261
17. Cholinergic drugs. In: Stamper R. L., Lieberman M. F., Drake M. V., eds. Becker-Shaffer's diagnosis and therapy of the glaucomas. 8 ed. louis: elsevier inc; 2009: 420–30.
18. Grewal D. S., Goldstein D. A., Khatana A. K., Tanna A. P. Bilateral angle closure following use of a weight loss combination agent containing topiramate. J. Glaucoma. 2015; 24 (5): e132-6. doi: 10.1097/IJG.0000000000000157
19. Baskaran M., Ho S. W., Tun T. A., et al. Assessment of circumferential angle-closure by the iris-trabecular contact index with swept-source optical coherence tomography. Ophthalmology. 2013; 120 (11): 2226–31. doi: 10.1016/j.ophtha.2013.04.020
20. Aptel F., Denis P. Optical coherence tomography quantitative analysis of Iris volume changes after pharmacologic mydriasis. Ophthalmology. 2010; 117 (1): 3–10. doi: 10.1016/j.ophtha.2009.10.030
21. Soh Z. D., Thakur S., Majithia S., Nongpiur M. E., Cheng C. Y. Iris and its relevance to angle closure disease: a review. Br. J. Ophthalmol. 2021; 105 (1): 3–8. doi: 10.1136/bjophthalmol-2020-316075
22. Zhang Y., Li S. Z., Li L., et al. Dynamic iris changes as a risk factor in primary angle closure disease. Invest. Ophthalmol Vis. Sci. 2016; 57 (1): 218–26. doi:10.1167/iovs.15-17651
23. Yang H., Yu P. K., Cringle S. J., et al. Iridial vasculature and the vital roles of the iris. J. Nat. Sci. 2015; 1(8): e 157.
24. Yang H., Yu P. K., Cringle S. J., et al. Intracellular cytoskeleton and junction proteins of endothelial cells in the porcine iris microvasculature. Exp. Eye Res. 2015; 140: 106–16. doi: 10.1016/j.exer.2015.08.025
25. Yang H., Yu P. K., Cringle S. J., et al. Quantitative study of the microvasculature and its endothelial cells in the porcine iris. Exp. Eye Res. 2015; 132: 249–58. doi: 10.1016/j.exer.2015.02.006
26. Seager F. E., Jefferys J. L., Quigley H. A. Comparison of dynamic changes in anterior ocular structures examined with anterior segment optical coherence tomography in a cohort of various origins. Invest. Ophthalmol. Vis. Sci. 2014; 55 (3): 1672–83. doi: 10.1167/iovs.13-13641
27. Quigley H. A., Friedman S., Congdon N. G. Does acute primary angle-closure cause an increased choroidal thickness? Invest. Ophthalmol. Vis. Sci. 2013; 54 (5): 3538–45. doi: 10.1167/iovs.13-13158
28. Zhou M., Wang W., Ding X., et al. Choroidal thickness in fellow eyes of patients with acute primary angle closure measured by enhanced depth imaging spectral domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2013; 19; 54 (3): 1971–8. doi: 10.1167/iovs.12-11090
29. Wang W., Zhou M., Huang W., et al. Does acute primary angle-closure cause an increased choroidal thickness? Invest. Ophthalmol. Vis. Sci. 2013; 54 (5): 3538–45. doi: 10.1167/iovs.13-11728
30. Li S. N., Wang N. L. The role of choroidal thickness change in acute attack of primary angle closure glaucoma. Zhonghua Yan Ke Za Zhi. 2016; 52 (6): 404–6. doi: 10.3760/cma.j.issn.0412-4081.2016.06.002
31. Arora K. S., Jefferys J. L., Maul E. A., Quigley H. A. The choroid is thicker in angle closure than in open angle and control eyes. Invest. Ophthalmol. Vis. Sci. 2012; 53 (12): 7813–18. https://doi.org/10.1167/iovs.12-10483
32. Курышева Н. И. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии / Н. И. Курышева [и др.] // Глаукома. – 2013. – 3–2: 73–83. [Kurysheva N. I., Ardzhevnishvili T. D., Kiseleva T. N., Fomin A. V. Choroid in glaucoma: results of an optical coherence tomography study. Glaukoma. 2013; 3–2: 73–83 (in Russian)].
33. Quigley H. A. What’s the choroid got to do with angle closure? Arch. Ophthalmol. 2009; 127 (5): 693–4. doi: 10.1001/archophthalmol.2009.80
34. Sun X., Dai Y., Chen Y., Yu D. Y., et al. Primary angle closure glaucoma: What we know and what we don’t know. Prog. Retin. Eye Res. 2017; 57: 26–45. URL: https://pubmed.ncbi.nlm.nih.gov/28039061/
35. Tan P. E, Yu P. K., Cringle S. J., Morgan W. H., Yu D.-Y. Regional heterogeneity of endothelial cells in the porcine vortex vein system. Microvasc Res. 2013; 89: 70–9. URL: https://pubmed.ncbi.nlm.nih.gov/23778200/
36. Yu P. K., Cringle S. J., Yu D. Y. Quantitative study of ageelated endothelial phenotype change in the human vortex vein system. Microvasc. Res. 2014; 94: 64–72. doi: 10.1016/j.mvr.2014.05.004
37. Yu P. K., Tan P. E., Cringle S. J., McAllister I. L., Yu D.-Y. Phenotypic heterogeneity in the endothelium of the human vortex vein system. Exp. Eye Res. 2013; 115: 144–52. doi: 10.1016/j.exer.2013.07.006
38. Kong X., Yan M., Sun X., Xiao Z. Anxiety and depression are more prevalent in primary angle closure glaucoma than in primary open-angle glaucoma. J. Glaucoma. 2015; 24 (5): e 57–63. doi: 10.1097/IJG.0000000000000025.
39. Kong X. M., Zhu W. Q., Hong J. X., Sun, X. H. Is glaucoma comprehension associated with psychological disturbance and vision-related quality of life for patients with glaucoma? A cross-sectional study. BMJ Open. 2014; 4 (5): e 004632. doi: 10.1136/bmjopen-2013-004632
40. Lim N. C., Fan C. H., Yong M. K., Wong E. P. Y., Yip L. W. Y. Assessment of Depression, Anxiety, and Quality of Life in Singaporean Patients With Glaucoma. 2016; 25 (7): 605–12. doi: 10.1097/IJG.0000000000000393
41. Алексеев В. Н. Особенности состояния нервной системы больных глаукомой / В. Н. Алексеев, О. И. Лысенко // Национальный журнал "Глаукома". – 2017. – 16 (3): 103–12. [Alekseev V. N., Lysenko O. I. Features of the state of the nervous system of patients with glaucoma. Glaukoma. 2017; 16 (3): 103–2 (in Russian)].
42. Quigley H. A. Glaucoma: what every patient should know. Part 4. How should I change my life? What does low vision treatment have to offer? // Национальный журнал "Глаукома". 2015; 14 (2): 65–8. [Quigley H. A. National Journal glaucoma / H. A.Quigley. – 2015. – 14 (2): 65–8 (in Russian)].
43. Arit M., Minami E., Nakamura C. Role of the sympathetic nervous system in the nocturnal fall in blood pressure. Hypertens. Res. 1996; 19 (3): 195–200. doi: org/10.1291/hypres.19.195. doi: 10.1291/hypres.19.195
44. Leggio G. M., Bucolo C., Platania C., Salomone S., Drago F. Current drug treatments targeting dopamine D3 receptor. Pharmacol. Ther. 2016; 165: 164–77. doi: 10.1016/j.pharmthera.2016.06.007
45. Vithana E. N., Khor C. C., Qiao C., et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat. Genet. 2012; 44 (10): 1142–6. doi: 10.1038/ng.2390
46. Awadalla M. S., Thapa S. S., Hewitt A. W., Burdon K. P., Craig J. E. Association of genetic variants with primary angle closure glaucoma in two different populations. PLoS One. 2013; 8 (6): e67903. doi: 10.1371/journal.pone.0067903
47. Lee M. C., Chan A. S., Goh S. R., et al. Expression of the primary angle closure glaucoma (PACG) susceptibility gene PLEKHA7 in endothelial and epithelial cell junctions in the eye. Invest. Ophthalmol. Vis. Sci. 2014; 55 (6): 3833–41. doi: 10.1167/iovs.14-14145
48. Chen Y., Chen X., Wang L., et al. Extended association study of PLEKHA7 and COL11A1 with primary angle closure glaucoma in a Han Chinese population. Invest. Ophthalmol. Vis. Sci. 2014; 55 (6): 3797–802. doi: 10.1167/iovs.14-14370
49. Wei X., Nongpiur M. E., de Leon M. S., et al. Genotype-phenotype correlation analysis for three primary angle closure glaucoma-associated genetic polymorphisms. Invest. Ophthalmol. Vis. Sci. 2014; 55 (2): 1143–8. doi: 10.1167/iovs.13-13552
50. Seet L. F., Narayanaswamy A., Finger S. N., et al. Distinct iris gene expression profiles of primary angle closure glaucoma and primary open angle glaucoma and their interaction with ocular biometric parameters. Clin. Exp. Ophthalmol. 2016; 44 (8): 684–92. doi: 10.1111/ceo.12743
51. Chung C., Dai M., Lin J., et al. Correlation of iris collagen and in-vivo anterior segment structures in patients in different stages of chronic primary angle-closure in both eyes. Indian J. Ophthalmol. 2019; 67 (10): 1638–44. doi: 10.4103/ijo.IJO_1406_18
52. Wang X., Jiang С., Kong X., Yu X., Sun X. Peripapillary retinal vessel density in eyes with acute primary angle closure: an optical coherence tomography angiography study. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2017; 255 (5): 1013–8. doi: 10.1007/s00417-017-3593-1
53. Zhu L., Zong Y., Yu J., et al. Reduced retinal vessel density in primary angle closure glaucoma: A quantitative study using Optical Coherence Tomography Angiography. J. Glaucoma. 2018; 27 (4): 322–7. doi:10.1097/IJG.0000000000000900
54. Zhang S., Wu C., Liu L., et al. Optical Coherence Tomography Angiography of the peripapillary retina in primary angle-closure glaucoma. Am. J. Ophthalmol. 2017; 182: 194–200. doi: 10.1016/j.ajo.2017.07.024
55. Sehi M., Goharian I., Konduru R., et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014; 121 (3): 750–8. doi: 10.1016/j.ophtha.2013.10.022
Review
For citations:
Bakunina N.A. State of the art in acute glaucoma attack predisposition issue. Russian Ophthalmological Journal. 2022;15(2):167-171. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-2-167-171