Smart contact lenses and anterior chamber electronic implants: prospects of application in ophthalmology
https://doi.org/10.21516/2072-0076-2022-15-2-177-185
Abstract
Systemic and ophthalmological diseases are on the rise the world over, which is, to a large extent, caused by life expectancy growth. Therefore, early diagnosis, screening and monitoringpossibilities of human health parameters is becoming more and more important. Contact lenses, due to being fitted on the eye’s surface, are constantly wetted by tear fluid, and due to present-day microelectronics achievements may be used as a convenient technical means for locating a variety of sensors. The existing prototypes of electronic contact lenses (ECL) are able to monitor intraocular pressure (IOP), levels of glucose, hormones and other biomarkers that reflect the presence of ophthalmic and systemic diseases. The review discusses the publications focused on prototyping results and first laboratory tests. As of today, only one developed device is available for clinical practice (IOP monitoring), others are at different stages of research but have all potentials for being used widely.
Keywords
About the Authors
D. M. ShamaevRussian Federation
Dmitry M. Shamaev, Cand. of Tech. Sci., researcher, associate professor
117452
39, Bldg. 1, Azovskaya St.
chair of elements of instrument devices
105005
5, Bldg 1, 2nd Baumanskaya St.
Moscow
V. V. Zayats
Russian Federation
Vitaly V. Zayats, Cand. of Med. Sci., director
117452
39, Bldg. 1, Azovskaya St.
Moscow
E. N. Iomdina
Russian Federation
Elena N. Iomdina, Dr. of Biol. Sci., professor, principal researcher
department of refraction pathology, binocular vision and ophthalmoergonomics
105062
14/19, Sadovaya-Chernogryazskaya St.
Moscow
P. V. Luzhnov
Russian Federation
Petr V. Luzhnov, Cand. of Tech. Sci., associate professor
chair of medical and technical information technologies
105005
5, Bldg 1, 2nd Baumanskaya St.
Moscow
O. I. Nikitin
Russian Federation
Oleg I. Nikitin, project manager 1 , ophthalmologist
117452
39, Bldg. 1, Azovskaya St.
Treatment and Rehabilitation Center
3, Ivankovskoe Hw.
Moscow
References
1. World Health Organization: Blindness and vision impairment. 2021. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/blindness-and-visual-impairment — 2021
2. Пузин С. Н. Динамика повторной инвалидности вследствие болезни глаза в Российской Федерации в динамике за 10 лет (2007–2016 гг.) / С. Н. Пузин [и др.] // Вестник Всероссийского общества специалистов по медико-социальной экспертизе, реабилитации и реабилитационной индустрии. – 2018/ – 21 (3–4): 134–7. [Puzin S. N., Nazaryan M. G., Schekaturov A. A., Arbuhanova P. M., Vertash O. Yu. Dynamics of repeated disability due to eye disease in the Russian Federation over 10 years (2007–2016). Bulletin of the All-Russian Society of Specialists in Medical and Social Expertise, Rehabilitation and Rehabilitation Industry. 2018; 21 (3–4): 134–7 (in Russian)]. doi: http://dx.doi.org/10.18821/1560-9537-2018-21-3-134-137
3. Шургая М. А. Инвалидность граждан пожилого возраста в Российской Федерации / М. А. Шургая // Здравоохранение Российской Федерации. – 2017. – 61 (6): 292–299. [Shurgaya M. A. Disability of elderly citizens in the Russian Federation. Healthcare of the Russian Federation. 2017; 61 (6): 292–9 (in Russian)]. URL: https://cyberleninka.ru/article/n/invalidnost-grazhdan-pozhilogo-vozrasta-v-rossiyskoy-federatsii?ysclid=l5mdutbw2d110121865
4. Кулик А. В. Метод прогнозирования риска развития макулодистрофии / Кулик А.В., Богомолов А.В. // Медицинский вестник Северного Кавказа. – 2016. – 11 (3): 448–51. [Kulik A. V., Bogomolov A. V. Risk predicting method of macular degeneration progression. Medical news of the North Caucasus. 2016; 11 (3): 448–51 (in Russian)]. http://dx.doi.org/10.14300/mnnc.2016.11101
5. Hughes E., Spry P., Diamond J. 24-hour monitoring of intraocular pressure in glaucoma management: a retrospective review. Journal of Glaucoma. 2003; 12 (3): 232–6. doi: https://doi.org/10.1097/00061198-200306000-00009
6. Legerton J. A. Where are all the smart lenses? Contact Lens Spectrum, 2020; 35 (Dec 2020): 26, 27, 29, 30–32. Available at: https://www.clspectrum.com/issues/2020/december-2020/where-are-all-the-smart-lenses
7. Leonardi M., Pitchon E. M., Bertsch A., Renaud P., Mermoud A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 2009; 87 (4): 433–7. doi: https://doi.org/10.1111/j.1755-3768.2008.01404.x
8. Donida A., Di Dato G., Cunzolo P., et al. A circadian and cardiac intraocular pressure sensor for smart implantable lens. IEEE Transactions on Biomedical Circuits and Systems, 2015; 9 (6): 777–89. doi: https://doi.org/10.1109/tbcas.2015.2501320
9. Chow E. Y., Chlebowski A. L., Irazoqui P. P. A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor, IEEE Trans. Biomed. Circuits Syst. 2010; 4 (6): 340–9. doi: https://doi.org/10.1109/tbcas.2010.2081364
10. Chitnis G., Maleki T., Samuels B., Cantor L. B., Ziaie B. A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring. IEEE Trans. Biomed. Eng. 2013; 60 (1): 250–6. doi: https://doi.org/10.1109/tbme.2012.2205248
11. Jones L., Alex Hui, Phan C., et al. BCLA CLEAR - Contact lens technologies of the future. Contact lens and anterior eye. 2021; 44 (2): 398–430. doi: https://doi.org/10.1016/j.clae.2021.02.007
12. Maeng B., Chang H., Park J. Photonic crystal-based smart contact lens for continuous intraocular pressure monitoring. Lab Chip. 2020; 20: 1740–50. https://doi.org/10.1039/c9lc01268k
13. Perry T. S. Augmented reality in a contact lens: it’s the real deal. IEEE Spectrum. 2020; Available at: https://spectrum.ieee.org/ar-in-a-contact-lens-its-the-real-deal
14. Stein S. A single contact lens could give your entire life a head-up display. 2020. Available at: https://www.cnet.com/health/a-single-contact-lens-could-give-your-entire-life-a-head-up-display/
15. Vanhaverbeke C., Verplancke R., De Smet J., Cuypers D., De Smet H. Microfabrication of a spherically curved liquid crystal display enabling the integration in a smart contact lens. Displays. 2017; 49 (2017): 16–25. doi: https://doi.org/10.1016/j.displa.2017.05.005
16. Vasquez Quintero A., Perez-Merino P., De Smet H. Artificial iris performance for smart contact lens vision correction applications. Sci. Rep. 2020; 10 (1): 14641. doi: https://doi.org/10.1038/s41598-020-71376-1
17. Raducanu B. C., Zaliasl S., Stanzione S., et al. An artificial iris ASIC with high voltage liquid crystal driver, 10nA Light Range Detector and 40nA Blink Detector for LCD flicker removal. IEEE Solid-State Circuits Letters. 2020; 3: 506–9. https://doi.org/10.1109/LSSC.2020.3032232
18. Arden G. B., Wolf J. E., Tsang Y. Does dark adaptation exacerbate diabetic retinopathy? Evidence and a linking hypothesis. Vision Res. 1998 Jun; 38 (11): 1723–9. doi: 10.1016/s0042-6989(98)00004-2
19. Cook C. A., Martinez-Camarillo J. C., Yang Q., et al. Phototherapeutic contact lens for diabetic retinopathy. IEEE Micro Electro Mechanical Systems. 2018. doi: https://doi.org/10.1109/MEMSYS.2018.8346482
20. Ryan Chang Tseng, Ching-Chuen Chen, Sheng-Min Hsu, Han-Sheng Chuang. Contact-lens biosensors. Sensors. 2018; 18 (8): 2651. doi: https://doi.org/10.3390/s18082651
21. Tinku I. S., Collini C., Lorenzelli L. Smart contact lens using passive structures. SENSORS. 2014. doi: https://doi.org/10.1109/ICSENS.2014.6985453
22. Park J., Kim J., Kim S.-Y., et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018; 4 (1). doi: https://doi.org/10.1126/sciadv.aap9841
23. Aihara M., Kubota N., Takahiro M., et al. Association between tear and blood glucose concentrations: Random intercept model adjusted with confounders in tear samples negative for occult blood. J. Diabetes Investigating. 2021; 12: 266–76. doi: 10.1111/jdi.13344
24. Aihara M., Kubota N., Kadowaki T. Study of the correlation between tear glucose concentrations and blood glucose concentrations. Diabetes. 2018; 67 (1): 944. doi: https://doi.org/10.2337/db18-944-P
25. Cheonhoo Jeo, Jahyun Koo, Kyongsu Lee, et al. A smart contact lens controller IC supporting dual-mode telemetry with wireless-powered backscattering LSK and EM-radiated RF transmission using a single-loop antenna. IEEE Journal of solid-state circuits. 2019; 55 (4): 856–67. doi: 10.1109/JSSC.2019.2959493
26. Ku M., Kim J., Won J.-E., et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 2020; 6 (28). doi: https://doi.org/10.1126/sciadv.abb2891
27. Donora M., Quintero A., De Smet H, Underwood I. Spatiotemporal electrochemical sensing in a smart contact lens. Sensors and actuators B: Chemical. 2020; 303: 127203. doi: https://doi.org/10.1016/j.snb.2019.127203
28. Guo Sh., Wu K., Li Ch., et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021; 4 (3): 969–85.
29. Ghilardi M., Boys H., Török P., Busfield J. C., Carpi F. Smart lenses with electrically tuneable astigmatism. Sci. Rep. 2019; 9 (1). doi: https://doi.org/10.1038/s41598-019-52168-8
30. Chou B., Legerton J. CLs beyond vision correction: connecting to the internet of things. Review of optometry. 2017; Available at: https://www.reviewofoptometry.com/article/cls-beyond-vision-correction-connecting-to-the-internet-of-things
31. Jeelani S., Reddy R. C., Maheswaran T., et al. Theranostics: A treasured tailor for tomorrow. J. Pharm. Bioallied Sci. 2014; 6 (1): 6–8. doi: https://doi.org/10.4103/0975-7406.137249
32. Fu R., Klinngam W., Heur M., Edman M. C., Hamm-Alvarez S. F. Tear proteases and protease inhibitors: potential biomarkers and disease drivers in ocular surface disease. Eye Contact Lens 2020; 46 (2): 70–83. doi: 10.1097/ICL.0000000000000641
33. Keum D. H., Kim S. K., Koo J., et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci. Adv 2020; 6 (17). doi: http://dx.doi.org/10.1126/sciadv.aba3252
34. Farandos N. M., Yetisen A. K., Monteiro M. J., Lowe C. R., Yun S. H. Contact lens sensors in ocular diagnostics. Advanced Healthcare Materials. 2015; 4 (6): 792–810. doi: https://doi.org/10.1002/adhm.201400504
35. Pajic B., Resan M., Pajic-Eggspuehler B., Zeljka Cvejic H. M. Triggerfish recording of IOP patterns in combined HFDS minimally invasive glaucoma and cataract surgery: A Prospective Study. J. Clin. Med. 2021; 10 (16): 3472. doi: https://doi.org/10.3390/jcm10163472
36. Savariraj A. D., Salih A., Alam F., Elsherif M., et al. Ophthalmic sensors and drug delivery. ACS Sens. 2021; 6 (6): 2046−76. doi: https://doi.org/10.1021/acssensors.1c00370
37. Haein Shin, Hunkyu Seo, Won Gi Chung, et al. Recent progress on wearable point-of-care devices for ocular systems. Lab Chip. 2021; 21 (7): 1269–86. doi: 10.1039/d0lc01317j
38. Xin Ma, Samad Ahadian, Song Liu, et al. Smart contact lenses for biosensing applications. Advanced Intelligent Systems. 2021; 3 (5): 2000263. doi: 10.1002/aisy.202000263
39. Kim J., Park J., Park Y., et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure. Nature Biomedical Engineering. 2021; 5 (7): 772–82. doi: https://doi.org/10.1038/s41551-021-00719-8
Review
For citations:
Shamaev D.M., Zayats V.V., Iomdina E.N., Luzhnov P.V., Nikitin O.I. Smart contact lenses and anterior chamber electronic implants: prospects of application in ophthalmology. Russian Ophthalmological Journal. 2022;15(2):177-185. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-2-177-185