A variant of combined treatment for chronic central serous chorioretinopathy complicated by type 1 choroidal neovascularization
https://doi.org/10.21516/2072-0076-2023-16-1-82-89
Abstract
Purpose: to evaluate the effectiveness of combined treatment of chronic central serous chorioretinopathy (CSCRP) complicated by type 1 choroidal neovascularization (CNV) by subthreshold micropulse laser exposure (SMILE) and intravitreal injection of angiogenesis inhibitors ( IIAI). Material and methods. 37 patients (20 men and 17 women) with monolateral chronic recurrent CSCRP complicated by type 1 CNV, aged 35 to 57 (ave. 43.6 ± 6.7 yrs.) at the moment of first referral, were divided into two groups. The retrospective group included 15 patients (15 eyes) whose first phase of treatment consisted in IIAI (up to 5 injections with an interval of one month). Those who showed no treatment effect were given a SMILE procedure one day before the 6th injection. If neurosensory retinal detachment persisted, the combined treatment (SMILE + IIAI) was repeated monthly until the neurosensory retina could be fully attached, whereupon the patients were transferred to monotherapy with anti-VEGF injections, gradually increasing the interval between the injections. The main group included 22 patients (22 eyes), whose treatment began with a single IIAI. If no neurosensory retinal detachment resorption occurred, the patients received a SMILE procedure one day before the second IIAI injection. The combined treatment was repeated monthly until neurosensory retinal detachment completely resorbed, then the treatment continued with IIAI alone with a gradual increase of intervals between the injections. Results. The number of IIAI in the main group (5 to 8, ave. 6.1 ± 0.8) was significantly lower than in the retrospective group (8 to 10, ave. 8.8 ± 0.77). Best corrected visual acuity increased in both groups, but the main group showed a better central photosensitivity, which is associated with the faster reattachment of neurosensory retina. By the end of the follow-up period, the area of type 1 CNV, and the thickness of the choroid were significantly lower in the main group as compared to the retrospective group. The combined treatment did not cause a single case of complication. Conclusion. The proposed combination of laser exposure followed by IIAI is a safe method for treating complicated forms of CSCRP, which quickens the resorption of subretinal fluid and reduces the number of treatment procedures.
About the Authors
A. V. TereshchenkoRussian Federation
Aleksandr V. Tereshchenko — Dr. of Med. Sci., director
5, Svyatoslav Fedorov St., Kaluga, 248007
E. V. Erokhina
Russian Federation
Elena V. Erokhina — ophthalmologist, head of the diagnostic department #2
5, Svyatoslav Fedorov St., Kaluga, 248007
Yu. A. Sidorova
Russian Federation
Yuliya A. Sidorova — Cand. of Med. Sci., head of the department of laser surgery of eye fundus pathology
5, Svyatoslav Fedorov St., Kaluga, 248007
I. G. Trifanenkova
Russian Federation
Irina G. Trifanenkova — Dr. of Med. Sci., deputy director
5, Svyatoslav Fedorov St., Kaluga, 248007
References
1. Liew G., Quin G., Gillies M., Fraser-Bell S. Central serous chorioretinopathy: a review of epidemiology and pathophysiology. Clin. Exp. Ophthalmol. 2013; 41 (2): 201–14. doi: 10.1111/j.1442-9071.2012.02848.x
2. Kachalina G.F., Pedanova E.K., Solomin V.A., Klepinina O.B. Morphofunctional results of treatment of central serous chorioretinopathy in a subthreshold micro-pulse mode of laser exposure with a wavelength of 577 nm (preliminary report). Bulletin of the Orenburg State University. 2013; 153 (4): 127–30 (in Russian).
3. Wang M., Munch I.C., Hasler P.W., Prünte C., Larsen M. Central serous chorioretinopathy. Acta Ophthalmol. 2008; 86 (2): 126–45. doi: 10.1111/j.1600- 0420.2007.00889.x
4. Lee G.I., Kim A.Y., Kang S.W., et al. Factors and outcomes of choroidal neovascularization secondary to central serous chorioretinopathy. Sci Rep. 2019; 9 (1): 3927. doi: 10.1038/s41598-019-40406-y
5. Gupta B., Elagouz M., McHugh D., Chong V., Sivaprasad S. Micropulse diode laser photocoagulation for central serous chorio-retinopathy. Clin. Exper. Ophthalmol 2009; 37 (8): 801–5. doi: 10.1111/j.1442-9071.2009.02157.x
6. Shchegoleva I.V., Budzinskaya M.V. Etiology and pathogenesis of central serous chorioretinopathy. Bulletin of ophthalmology. 2010; 126 (3): 55–8 (in Russian).
7. Wang M., Sander B., Larsen M. Retinal atrophy in central serous chorioretinopathy. Am. J. Ophthalmol. 2002; 133 (6): 787–93 doi: 10.1016/ s0002-9394(02)01438-1
8. Dansingani K.K., Balaratnasingam C., Klufas M.A., Sarraf D., Freund K.B. Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease. Am. J. Ophthalmol. 2015; 160 (6): 1243–54 e2. doi: 10.1016/j.ajo.2015.08.028
9. Bousquet E., Bonnin S., Mrejen S., et al. Optical coherence tomography angiography of flat irregular pigment epithelium detachment in chronic central serous chorioretinopathy. Retina. 2018; 38 (3): 629–38. doi: 10.1097/ IAE.0000000000001580
10. Miyake M., Tsujikawa A., Yamashiro K., et al. Choroidal neovascularization in eyes with choroidal vascular hyperpermeability. Invest. Ophthalmol. Vis. Sci. 2014; 55 (5): 3223–30. doi: 10.1167/iovs.14-14059
11. Shiragami C., Takasago Y., Osaka R., et al. Clinical features of central serous chorioretinopathy with type 1 choroidal neovascularization. Am. J. Ophthalmol. 2018; 193: 80–6. doi: 10.1016/j.ajo.2018.06.009
12. Quaranta-El M.M., El M.A., Eandi C.M. Chronic central serous chorioretinopathy imaged by optical coherence tomographic angiography. Am. J. Ophthalmol. 2015; 160 (3): 581–7 e1. doi: 10.1016/j.ajo.2015.06.016
13. Pang C.E., Freund K.B. Pachychoroid neovasculopathy. Retina. 2015; 35 (1): 1–9. doi: 10.1097/IAE.0000000000000331
14. Schworm B., Luft N., Keidel L.F., et al. Response of neovascular central serous chorioretinopathy to an extended upload of anti-VEGF agents. Graefes Arch. Clin. Exp. Ophthalmol. 2020; 258 (5): 1013–21. doi: 10.1007/s00417-020- 04623-w
15. De Carlo T.E., Bonini Filho M.A., Chin A.T., et al. Spectral- domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology. 2015; 122 (6): 1228–38. doi: 10.1016/j.ophtha.2015.01.029
16. Muakkassa N.W., Chin A.T., de Carlo T., et al. Characterizing the effect of anti-vascular endothelial growth factor therapy on treatment-naive choroidal neovascularization using optical coherence tomography angiography. Retina. 2015; 35 (11): 2252–9. doi: 10.1097/IAE.0000000000000836
17. Broadhead G., Chang A. Intravitreal aflibercept for choroidal neovascularisation complicating chronic central serous chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2015; 253 (6): 979–81. doi 10.1007/s00417-014-2891-0
18. Pitcher J., Witkin A., DeCroos F., Ho A. A prospective pilot study of intravitreal aflibercept for the treatment of chronic central serous chorioretinopathy: the CONTAIN study. Br. J. Ophthalmol. 2015; 99 (6): 848–52. doi: 10.1136/ bjophthalmol-2014-306018
19. Ng W.W., Wu Z.H., Lai T.Y. Half-dose verteporfin photodynamic therapy for bullous variant of central serous chorioretinopathy: a case report. J. Med. Case Rep. 2011; 5: 208. doi: 10.1186/1752-1947-5-208
20. Pryds A., Larsen M. Choroidal thickness following extrafoveal photodynamic treatment with verteporfin in patients with central serous chorioretinopathy. Acta Ophthalmol. 2012; 90 (8): 738–43. doi: 10.1111/j.1755-3768.2011.02157.
21. Shin J.Y., Woo S.J., Yu H.G., Park K.H. Comparison of efficacy and safety between half-fluence and full-fluence photodynamic therapy for chronic central serous chorioretinopathy. Retina. 2011; 31 (1): 119–26. doi: 10.1097/ IAE.0b013e3181e378f2
22. Uetani R., Ito Y., Oiwa K., Ishikawa K., Terasaki H. Half-dose vs one-thirddose photodynamic therapy for chronic central serous chorioretinopathy. Eye (Lond) 2012; 26 (5): 640–9. doi: 10.1038/eye.2012.66
23. Volodin P.L., Doga A.V., Ivanova E.V., et al. A personalized approach to the treatment of chronic central serous chorio-retinopathy based on the navigation technology of micropulse laser action. Ophthalmology. 2018; 15 (4): 394–404 (in Russian). doi: 10.18008/1816-5095-2018-4-394-404
24. Malinovskaya M.A., Dikovskaya M.A. The first experience of using subthreshold micro-pulsed laser exposure of 577 nm for choroidal neovascularization. Modern technologies in ophthalmology. 2018; 1: 245–9 (in Russian).
25. Prasuhn M., Miura Y., Tura A., et al. Influence of retinal microsecond pulse laser treatment in central serous chorioretinopathy: A short-term optical coherence tomography angiography study. J. Clin. Med. 2021; 10 (11): 2418. doi: 10.3390/ jcm10112418
26. Fung A.T., Yannuzzi L.A., Freund K.B. Type 1 (sub-retinal pigment epithelial) neovascularization in central serous chorioretinopathy masquerading as neovascular age-related macular degeneration. Retina. 2012; 32 (9): 1829–37. doi: 10.1097/IAE.0b013e3182680a66
27. Spaide R.F. Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization. Am. J. Ophthalmol. 2015; 160 (1): 6–16. doi: 10.1016/j.ajo.2015.04.012
28. Sacconi R., Tomasso L., Corbelli E., et al. Early response to the treatment of choroidal neovascularization complicating central serous chorioretinopathy: an OCT-angiography study. Eye (Lond). 2019; 33 (11): 1809–17. doi: 10.1038/ s41433-019-0511-2
29. Wu J.-S., Chen S.-N. Optical coherence tomography angiography for diagnosis of choroidal neovascularization in chronic central serous chorioretinopathy after photodynamic therapy. Sci. Rep. 2019; 9 (1): 9040. doi: 10.1038/s41598- 019-45080-8
30. Loo R.H., Scott I.U., Flynn Jr H.W., et al. Factors associated with reduced visual acuity during long-term follow-up of patients with idiopathic central serous chorioretinopathy. Retina. 2002; 22 (1): 19–24. doi: 10.1097/00006982- 200202000-00004
31. Spaide R.F., Campeas L., Haas A., et al. Central serous chorioretinopathy in younger and older adults. Ophthalmology. 1996; 103 (12): 2070–9. doi: 10.1016/ S0161-6420(96)30386-2
32. Demirel S., Yanık Ö., Nalcı H., Batıoğlu F., Özmert E. The use of optical coherence tomography angiography in pachychoroid spectrum diseases: a concurrent comparison with dye angiography. Graefes Arch. Clin. Exp. Ophthalmol. 2017; 255 (12): 2317–24. doi: 10.1007/s00417-017-3793-8
33. Carnevali A., Capuano V., Sacconi R., et al. Optical coherence tomography angiography of treatment-naïve quiescent choroidal neovascularization in pachychoroid neovasculopathy. Ophthalmol. Retina. 2017; 1 (4): 328–32. doi: 10.1016/j.oret.2017.01.003
34. Popova N.V., Gojdin A.P. Application of micropulse laser exposure in central serous chorioretinopathy. Practical medicine. 2016; 6 (98): 137–40 (in Russian).
35. Popova N.V., Fabrikantov O.L., Gojdin A.P. Comparative analysis of the use of suprathreshold laser coagulation and micropulse laser exposure in central serous chorioretinopathy. Saratov Journal of Medical Scientific Research. 2019: 15 (2): 532–6 (in Russian).
Review
For citations:
Tereshchenko A.V., Erokhina E.V., Sidorova Yu.A., Trifanenkova I.G. A variant of combined treatment for chronic central serous chorioretinopathy complicated by type 1 choroidal neovascularization. Russian Ophthalmological Journal. 2023;16(1):82-89. (In Russ.) https://doi.org/10.21516/2072-0076-2023-16-1-82-89