Eye damage in COVID-19. Part 2: posterior segment complications, neuro-ophthalmic manifestations, vaccination and risk factors
https://doi.org/10.21516/2072-0076-2023-16-1-157-167
Abstract
Posterior eye segment involvement in COVID-19 has varied manifestations: vascular, inflammatory, and neuronal. All of them are triggered by SARS-CoV-2 virus but they cannot be viewed as exclusively specific to COVID-19. According to the literature, the mean age of the patients varies from 17 to 75 with the median of 50 years. The median duration between the appearance of ophthalmic symptoms and the detection of COVID-19 was 12 days. The disease affects both men and women equally. Direct exposure to the virus, immune-mediated tissue damage, activation of the coagulation system, the prothrombotic state caused by a viral infection, concomitant diseases and medications used in the treatment contribute to the development of eye pathologies. Ophthalmologists should be aware of the possible relations of posterior eye segment pathologies, orbit and neuro-ophthalmic disorders with SARS-CoV-2, as well as the possible exacerbation of chronic forms of inflammatory eye diseases and autoimmune disorders due to anti-COVID-19 vaccination.
About the Authors
N. I. KuryshevaRussian Federation
Natalia I. Kurysheva — Dr. of Med. Sci., professor, head of chair of eye diseases; head of the consultative and diagnostic department
23, Marshal Novikov St., Moscow, 123098; 15, Gamaleya St., Moscow, 123098
O. A. Evdokimova
Russian Federation
Oksana A. Evdokimova — assistant of chair of eye diseases; ophthalmologist
23, Marshal Novikov St., Moscow, 123098; 15, Gamaleya St., Moscow, 123098
A. D. Nikitina
Russian Federation
Anastasiya D. Nikitina — assistant of chair of eye diseases;, ophthalmologist
23, Marshal Novikov St., Moscow, 123098; 15, Gamaleya St., Moscow, 123098
References
1. Tao L., Qiu Y., Fu X., et al. Angiotensin-converting Enzyme 2 activator Diminazene Aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-kappaB pathways in human retinal pigment epithelium. J. Neuroinflammation. 2016; 13 (1): 35. https://doi.org/10.1186/s12974-016-0489-7
2. Reichhart N., Figura A., Skosyrski S., Strauß O. Control of the Retinal Local RAS by the RPE: An Interface to Systemic RAS Activity. Exp. Eye Res. 2019; 189: 107838. https://doi.org/10.1016/j.exer.2019.107838
3. Fletcher E.L., Phipps J.A., Ward M.M., et al. The Renin-Angiotensin system in retinal health and disease: its influence on neurons, glia and the vasculature. Prog. Retin. Eye Res. 2010; 29 (4): 284–311. https://doi.org/10.1016/j.preteyeres.2010.03.003
4. Zhang Y.H., Zhang Y., Dong X.F., et al. ACE2 and Ang-(1–7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response. Inflamm. Res. 2015; 64 (3–4): 253-60. https://doi.org/10.1007/s00011-015-0805-1
5. Seah I., Agrawal R. Can the Coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul. Immunol. Inflamm. 2020; 28 (3): 391–5. https://doi.org/10.1080/09273948.2020.1738501
6. Lovren F., Pan Y., Quan A., et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am. J. Physiol. Heart Circ Physiol. 2008; 295 (4): H1377-84. https://doi.org/10.1152/ajpheart.00331.2008
7. Holappa M., Valjakka J., Vaajanen A. Angiotensin(1-7) and ACE2, “The Hot Spots” of renin-angiotensin system, detected in the human aqueous humor. Open Ophthalmol. J. 2015; 9 (1): 28–32. https://doi.org/10.2174/1874364101509010028
8. Invernizzi A., Pellegrini M., Messenio D., et al. Impending central retinal vein occlusion in a patient with coronavirus disease 2019 (COVID-19). Ocul. Immunol. Inflamm. 2020; 28: 1290–2. doi: 10.1080/09273948.2020.1807023
9. Walinjkar J.A., Makhija S.C., Sharma H.R., Morekar S.R., Natarajan S. Central retinal vein occlusion with COVID-19 infection as the presumptive etiology. Indian J. Ophthalmol. 2020; 68: 2572–4. doi: 10.4103/ijo.IJO_2575_20
10. Sheth J.U., Narayanan R., Goyal J., Goyal V. Retinal vein occlusion in COVID-19: A novel entity. Indian J. Ophthalmol. 2020; 68 (10): 2291–3. doi: 10.4103/ijo.IJO_2380_20
11. Gaba W.H., Ahmed D., Al Nuaimi R.K., Al Dhahani A.A., Eatmadi H. Bilateral central retinal vein occlusion in a 40-year-old man with severe coronavirus disease 2019 (COVID-19) pneumonia. Am. J. Case Rep. 2020; 21: e927691. doi: 10.12659/AJCR.927691
12. Acharya S., Diamond M., Anwar S., Glaser A., Tyagi P. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases. 2020; 21: e00867. doi: 10.1016/j.idcr.2020.e00867
13. Dumitrascu O.M., Volod O., Bose S., et al. Acute ophthalmic artery occlusion in a COVID-19 patient on apixaban. J. Stroke Cerebrovasc. Dis. 2020; 29: 104982. doi: 10.1016/j.jstrokecerebrovasdis.2020.104982
14. Gascon P., Briantais A., Bertrand E., et al. Covid-19-associated retinopathy: A case report. Ocul. Immunol. Inflamm. 2020; 28: 1293-7. doi: 10.1080/09273948.2020.1825751
15. Zamani G., Azimi S.A., Aminizadeh A., et al. Acute macular neuroretinopathy in a patient with acute myeloid leukemia and deceased by COVID-19: A case report. J. Ophthalmic Inflamm Infect. 2020; 10 (1): 39. doi: 10.1186/s12348-020-00231-1
16. Virgo J., Mohamed M. Paracentral acute middle maculopathy and acute macular neuroretinopathy following SARS-CoV-2 infection. Eye (Lond). 2020; 34 (12): 2352–3. doi: 10.1016/j.preteyeres.2020.100884
17. Zago Filho L.A., Lima L.H., Melo G.B., Zett C., Farah M.E. Vitritis and outer retinal abnormalities in a patient with COVID-19. Ocul. Immunol. Inflamm. 2020; 28 (8): 1298–300. doi: 10.1080/09273948.2020.1821898
18. Gupta A., Dixit B., Stamoulas K., Akshikar R. Atypical bilateral acute retinal necrosis in a coronavirus disease 2019 positive immunosuppressed patient. Eur. J. Ophthalmol. 2022; 32 (1): NP94-NP96. doi: 10.1177/1120672120974941
19. Sen M., Honavar S.G., Sharma N., et al. COVID-19 and eye: A review of ophthalmic manifestations of COVID-19. Indian Journal of Ophthalmology. 2021; 69 (3): 488–509. doi: 10.4103/ijo.IJO_297_21
20. Pereira L.A., Soares L.C.M., Nascimento P.A., et al. Retinal findings in hospitalised patients with severe COVID-19. Br. J. Ophthal. 2022; 106 (1): 102–5. doi: 10.1136/bjophthalmol-2020-317576
21. Providência J., Fonseca C., Henriques F., Proença R. Serpiginous choroiditis presenting after SARS- CoV-2 infection: A new immunological trigger? Eur. J. Ophthalmol. 2022; 32 (1): NP97–NP101. doi: 10.1177/1120672120977817
22. Casagrande M., Fitzek A., Püschel K., et al. Detection of SARS-CoV-2 in human retinal biopsies of deceased COVID-19 patients. Ocul. Immunol. Inflamm. 2020; 28 (5): 721–5. doi: 10.1080/09273948.2020.1770301
23. Cavalcanti D.D., Raz E., Shapiro M., et al. Cerebral venous thrombosis associated with COVID-19. AJNR Am. J. Neuroradiol. 2020; 41 (8): 1370–6. doi: 10.3174/ajnr.A6644
24. de Souza E. C., de Campos V. E., Duker J. S. Atypical unilateral multifocal choroiditis in a COVID-19 positive patient. Am. J. Ophthalmol. Case Reports. 2021; 22: 101034. doi: 10.1016/j.ajoc.2021.101034
25. Marinho P.M., Marcos A.A., Romano A.C., Nascimento H., Belfort R. Retinal findings in patients with COVID-19. Lancet. 2020; 395 (10237): 1610. https://doi.org/10.1016/S0140-6736(20)31014-X
26. Zapata M.Á., García S.B., Sánchez-Moltalva A., et al. Retinal microvascular abnormalities in patients after COVID-19 depending on disease severity. Br. J. Ophthalmol. 2022; 106 (4): 559–63. doi: 10.1136/bjophthalmol-2020-317953
27. Insausti-García A., Reche-Sainz J.A., Ruiz-Arranz C., Vázquez Á.L., Ferro-Osuna M. Papillophlebitis in a COVID-19 patient: Inflammation and hypercoagulable state. Eur. J. Ophthalmol. 2022; 32 (1): NP168-NP172. doi: 10.1177/1120672120947591
28. Sawalha K., Adeodokun S., Kamoga G.R. COVID-19-induced acute bilateral optic neuritis? J. Invest. Med. High. Impact. Case Rep. 2020; 8: 2324709620976018. doi: 10.1177/2324709620976018
29. Zhou S., Jones-Lopez E.C., Soneji D.J., Azevedo C.J., Patel V.R. Myelin oligodendrocyte glycoprotein antibody–associated optic neuritis and myelitis in COVID-19. J. Neuroophthalmol. 2020; 40 (3): 398–402. doi: 10.1097/WNO.0000000000001049
30. Méndez-Guerrero A., Laespada-García M.I., Gómez-Grande A., et al. Acute hypokinetic-rigid syndrome following SARS-CoV-2 infection. Neurology. 2020; 95 (15): e2109–18. doi: 10.1212/WNL.0000000000010282
31. Ortiz-Seller A., Martínez Costa L., Hernández-Pons A., et al. Ophthalmic and neuro-ophthalmic manifestations of coronavirus disease 2019 (COVID-19). Ocul. Immunol. Inflamm. 2020; 28 (8): 1285–9. doi: 10.1080/09273948.2020.1817497
32. Tisdale A.K., Chwalisz B.K. Neuro-ophthalmic manifestations of coronavirus disease 19. Curr. Opin. Ophthalmol. 2020; 31: 489–94. doi: 10.1097/ICU.0000000000000707
33. Politi L.S., Salsano E., Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol. 2020; 77 (8): 1028–9. doi: 10.1001/jamaneurol.2020.2125
34. Dinkin M., Gao V., Kahan J., et al. COVID-19 presenting with ophthalmoparesis from cranial nerve palsy. Neurology. 2020; 95 (5): 221–3. doi: 10.1212/WNL.0000000000009700
35. Gutiérrez-Ortiz C., Méndez-Guerrero A., Rodrigo-Rey S., et al. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020; 95 (5): e601–5. doi: 10.1212/WNL.0000000000009619
36. Greer C.E., Bhatt J.M., Oliveira C.A., Dinkin M.J. Isolated cranial nerve 6 palsy in 6 patients with COVID19 infection. J Neuroophthalmol. 2020; 40 (4): 520–2. doi: 10.1097/WNO.0000000000001146
37. Falcone M.M., Rong A.J., Salazar H., et al. Acute abducens nerve palsy in a patient with the novel coronavirus disease (COVID-19) J AAPOS. 2020; 24 (4): 216–7. doi:10.1016/j.jaapos.2020.06.001
38. Belghmaidi S., Nassih H., Boutgayout S., et al. Third cranial nerve palsy presenting with unilateral diplopia and strabismus in a 24-year-old woman with COVID-19? Am. J. Case Rep. 2020; 21: e925897. doi: 10.12659/AJCR.925897
39. Theophanous C., Santoro J.D., Itani R. Bell's palsy in a pediatric patient with hyper IgM syndrome and severe acute respiratory syndrome coronavirus 2 (SARSCoV-2). Brain Dev. 2021; 43 (2): 357–9. doi: 10.1016/j.braindev.2020.08.017
40. Assini A., Benedetti L., Di Maio S., Schirinzi E., Del Sette M. New clinical manifestation of COVID-19 related Guillain-Barrè syndrome highly responsive to intravenous immunoglobulins: Two Italian cases. Neurol Sci. 2020; 41 (7): 1657–8. doi: 10.1007/s10072-020-04484-5
41. Huber M., Rogozinski S., Puppe W., et al. Postinfectious onset of myasthenia gravis in a COVID-19 patient? Front Neurol. 2020; 11: 576153. doi: 10.3389/fneur.2020.576153
42. Cyr D.G., Vicidomini C.M., Siu N.Y., Elmann S.E. Severe bilateral vision loss in 2 patients with coronavirus disease 2019. J. Neuroophthalmol. 2020; 40 (3): 403–5. doi: 10.1097/WNO.0000000000001039
43. Yang Y., Qidwai U., Burton B.J., Canepa C. Bilateral, vertical supranuclear gaze palsy following unilateral midbrain infarct. BMJ Case Reports. 2020; 13 (11): e238422. doi: 10.1136/bcr-2020-238422
44. McGill COVID19 Vaccine Tracker Team. 2020. Available at: https://covid19.trackvaccines.org/vaccines/. Accessed 31 Dec 2020.
45. Zhao J., Zhao S., Ou J., et al. COVID-19: coronavirus vaccine development updates. Front Immunol. 2020; 11: 602256. doi: 10.3389/fimmu.2020.602256
46. Petousis-Harris H. Assessing the safety of COVID-19 vaccines: a primer. Drug Saf. 2020; 43 (12): 1205–10. doi: 10.1007/s40264-020-01002-6
47. Sallusto F., Lanzavecchia A., Araki K., Ahmed R. From vaccines to memory and back. Immunity. 2010; 33 (4): 451–63. doi: 10.1016/j.immuni.2010.10.008
48. Perez V.L., Caspi R.R. Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol. 2015; 36 (6): 354–63. doi: 10.1016/j.it.2015.04.003
49. DeFrancesco L. Whither COVID-19 vaccines? Nat. Biotechnol. 2020; 38 (10): 1132–45. doi: 10.1038/s41587-020-0697-7
50. Thng Z.X., De Smet M.D., Lee C.S., et al. COVID-19 and immunosuppression: a review of current clinical experiences and implications for ophthalmology patients taking immunosuppressive drugs. Br. J. Ophthalmol. 2021; 105 (3): 306–10. doi: 10.1136/bjophthalmol-2020-316586
51. Liang Y., Meng F.Y., Pan H.F., Ye D.Q. A literature review on the patients with autoimmune diseases following vaccination against infections. Hum. Vaccin. Immunother. 2015; 11 (9): 2274–80. doi: 10.1080/21645515.2015.1009337
52. Hung J.C.H., Li K.K.W. Implications of COVID-19 for uveitis patients: perspectives from Hong Kong. Eye. 2020; 34 (7): 1163–4. doi: 10.1038/s41433-020-0905-1
53. Agarwal A.K., Sudharshan S., Mahendradas P., et al. Impact of COVID-19 pandemic on uveitis patients receiving immunomodulatory and biological therapies (COPE STUDY). Br. J. Ophthalmol. 2022. 106 (1): 97–101. https://doi.org/10.1136/bjophthalmol-2020-317417
54. Furer V., Rondaan C., Heijstek M.W., et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2020; 79 (1): 39. doi: 10.1136/annrheumdis-2019-215882
55. Aggarwal K., Agarwal A., Jaiswal N., et al. Ocular surface manifestations of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. PLoS One. 2020; 15 (11): e0241661. doi: 10.1371/journal.pone.0241661
56. Belser J.A., Rota P.A., Tumpey T.M. Ocular tropism of respiratory viruses. Microbiol Mol Biol Rev MMBR. 2013; 77 (1): 144–56. doi: 10.1128/MMBR.00058-12
57. Chen L., Deng C., Chen X., et al. Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study. Acta Ophthalmol. 2020; 98 (8): e951–9. doi: 10.1111/aos.14472
Review
For citations:
Kurysheva N.I., Evdokimova O.A., Nikitina A.D. Eye damage in COVID-19. Part 2: posterior segment complications, neuro-ophthalmic manifestations, vaccination and risk factors. Russian Ophthalmological Journal. 2023;16(1):157-167. (In Russ.) https://doi.org/10.21516/2072-0076-2023-16-1-157-167