Preview

Russian Ophthalmological Journal

Advanced search

Traditional analogue vs. three-dimensional digital visualization used in ophthalmic surgery

https://doi.org/10.21516/2072-0076-2023-16-1-168-174

Abstract

The visualization of the surgical process remains a topical issue in cataract surgery. The review presents the history of visualization technique in ophthalmic surgery and compares the main current analogue and 3D digital technologies. The advent of 3D imaging systems in clinical practice has helped solve many issues associated with the use of standard analogue microscopes. These issues include limited focus and field of vision, the need to use a large amount of light, which increases the risk of iatrogenic retinal phototoxicity, the surgeon's attachment to the microscope and, consequently, a high load on the surgeon's visual apparatus when using eyepieces, as well as on their back and neck muscles.

About the Authors

V. S. Stebnev
Samara State Medical University, Institute of Vocational Education; “Eye Surgery” Ophthalmological Clinic
Russian Federation

Vadim S. Stebnev — Dr. of Med. Sci., professor of the department of eye diseases;  chief medical officer

89, Chapaevskaya St., Samara 443099; 25, Samarskaya St., Samara, 443020



A. V. Zhuravlev
Samara State Medical University, Institute of Vocational Education; Kinel Central Regional Hospital
Russian Federation

Anton V. Zhuravlev — PhD student of the department of eye diseases; ophthalmologist

89, Chapaevskaya St., Samara 443099; 12, Svetlaya St., Kinel, Samara region, 446430



References

1. Kriss T.C., Kriss V.M. History of the operating microscope: from magnifying glass to microneurosurgery. 1998; 42 (4): 899–907. doi: 10.1097/00006123- 199804000-00116

2. Bradbury S. The evolution of the microscope. New York: Pergamon, 1967.

3. Kalderon A.E. The evolution of microscope design from its invention to the present days. Am. J. Surg. Pathol. 1983; 7 (1): 95–102.

4. James P., Nick J. Thorpe. Ancient inventions. Ballantine: Books Inc.; 1997.

5. Соболь С.Л. Изобретение микроскопа и его исторические предпосылки. Москва; 1945: 418–9. [Sobol S.L. The invention of the microscope and its historical background. Moscow; 1945: 418–9 (In Russian)].

6. Kalderon A.E. The evolution of microscope design from its invention to the present days. Am. J. Surg. Pathol. 1983; 7 (1): 95–102.

7. Purtle H.R. History of the microscope. In: Gray P., eds. The encyclopedia of microscopy and microtechnique. New York: Van Nostrand Reinhold; 1973: 252–60.

8. Zuylen J.V. The microscopes of Antoni van Leeuwenhoek. J. Microsc. 1981; 309–28. doi: 10.1111/j.1365-2818.1981.tb01227.x

9. Landolt I.E. Review of surgical loupes. In: Handbuch der Augenheilunde. Berlin: Springer; 1920: 353–61.

10. Schultheiss D., Denil J. History of the microscope and development of microsurgery: a revolution for reproductive tract surgery. Andrologia. 2002; 34 (4): 234–41. doi: 10.1046/j.1439-0272.2002.00499.x

11. Perritt R.A. The operating microscope in practice. Bibl. Ophthamol. 1968; 77: 21–50. 12. Perritt R.A. Micro Ophthalmic Surgery. Belgica Acta. 1958; 2: 1680–3.

12. Jackson E. Magnifying lenses for use when operating. 1897. Arch. Ophthalmol. 1996; 114 (7): 867–8. doi: 10.1001/archopht.1996.01100140081014

13. Schultheiss D., Denil J. History of the microscope and development of microsurgery: a revolution for reproductive tract surgery. Andrologia. 2002; 34 (4): 234–41. doi: 10.1046/j.1439-0272.2002.00499.x

14. Czapski S. Binokulares Corneal Mikroskop. Graefe Arch. Ophthalmol. 1899; 48: 229–35.

15. Barraquer J.I. The microscope in ocular surgery. Am. J. Ophthalmol. 1956; 42 (6): 916–8. doi: 10.1016/0002-9394(56)90666-3

16. Nylean C.O. The microscope in aural surgery, its first use and later development. Acta Otolaryngol. Suppl. 1954; 226–40.

17. Tang C.T., Kurozumi, K., Pillai, et al. Quantitative analysis of surgical exposure and maneuverability associated with the endoscope and the microscope in the retrosigmoid and various posterior petrosectomy approaches to the petroclival region using computer tomograpy-based frameless stereotaxy. A cadaveric study. Clin. Neurol. Neurosurg, 2013; 115 (7): 1058–62. doi: 10.1016/j.clineuro.2012.10.023

18. Ulu K., Kujoth G.C., Ba kaya M.K. Operating microscopes: past, present, and future. Neurosurg. Focus. 2009; 27 (3): E 4. doi: 10.3171/2009.6.focus09120

19. Korolyuk I.P. Medical informatics. Samara: OOO «Ofort»; 2012 (in Russian).

20. Miron H., Blumenthal E.Z. Bridging analog and digital video in the surgical setting. J. Cataract Refract. Surg. 2003; 29 (10): 1874–7. doi: 10.1016/s0886- 3350(03)00252-9

21. Buckland E.L. Surgical microscopes using optical coherence tomography and related methods. Patent US # 8, 777, 412 B2; 2014.

22. Riew K.D., McCulloch J.A., Delamarter R.B., An H.S., Ahn N.U. Microsurgery for degenerative conditions of the cervical spine. Instruct. Course Lect. 2003; 52: 497–508.

23. Dhimitri K.C., McGwin G.Jr., McNeal S.F., et al. Symptoms of musculoskeletal disorders in ophthalmologists. Am. J. Ophthalmol. 2005; 139 (1): 179–81. doi: 10.1016/j.ajo.2004.06.091

24. Chatterjee A., Ryan W.G., Rosen E.S. Back pain in ophthalmologists. Eye (Lond). 1994; 8 (4): 473–4. doi: 10.1038/eye.1994.112

25. Siebelmann S., Steven P., Hoset D., et al. Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery. J. Biomed. Ort. 2016; 21 (1): 16005. doi: 10.1117/1.JBO.21.1.016005

26. Pershin K.B., Pashinova N.F., Tsygankov A.Yu., Cherkashina A.V. The first experience of using the Verion system for implantation of toric IOLs in patients with cataracts and astigmatism in the Russian Federation. Cataract and refractive surgery, 2016 (1): 20–4 (in Russian).

27. Weinstock R.J., Diakonis V.F., Schwartz A.J., Weinstock A.J. Heads-up cataract surgery: complication rates, surgical duration, and comparison with traditional microscopes. J. Refract. Surg. 2019; 35 (5): 318–22. doi: 10.3928/1081597x20190410-02

28. Belykh E., Xiaochun Z., Claudio C., et al. Laboratory evaluation of a robotic operative microscope — visualization platform for neurosurgery. Cureus. 2018; 10 (7): e 3073. doi: 10.7759/cureus.3072

29. Mamalis N. Correction of astigmatism during cataract surgery. J. Refract. Cataract Surgery. 2009; 35 (3): 403–4. doi: 10.3928/1081597X-20100526-01

30. Cha D., Kang S.Y., Kim S.-H., Song J.-S, Kim H.-M. New axis-marking method for a toric intraocular lens: mapping method. J. Refract. Surg. 2011; 27 (5): 375–9. doi: 10.3928/1081597X-20101005-01

31. Mascitelli J.R., Schlachter L., Chartrain A.G., et al. Navigation-linked heads-up display in intracranial surgery: early experience. Oper. Neurosurg. (Hagerstown). 2018; 15 (2): 184–93. doi: 10.1093/ons/opx205

32. Bickerton R., Nassimizadeh A.K., Ahmed S. Three-dimensional endoscopy: the future of nasoendoscopic training. Laryngoscope. 2019; 129 (6): 1280–5. doi: 10.1002/lary.27812

33. Rose A.S., Kim H., Fuchs H., Frahm J.M. Development of augmented-reality applications in otolaryngology-head and neck surgery. Laryngoscope. 2019; 129 (3): 1–11. doi: 10.1002/lary.28098

34. Bosc R., Fitoussi A., Hersant B., Dao T.H., Meningaud J.P. Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systematic review of the literature and a classification of relevant technologies. Int. J. Oral. Maxilllofacillac Surg. 2019; 48 (1): 132–9. doi: 10.1016/j.ijom.2018.09.010

35. Fotouhi J., Fuerst B., Lee S.C., et al. Interventional 3D augmented reality for orthopedic and trauma surgery. In: 6th Annual Meeting of the International Society for Computer Assisted Orthopedic Surgery (CAOS). 2016.

36. Weinstock R.J., Desai N. Heads-up cataract surgery with the TrueVision 3D display system. Surgical Techniques in Ophthalmology. Jaypee Medical Publishers. 2010; 1: 24–127. doi: 10.17925/EOR.2019.13.1.31

37. Weinstock R.J. Operate with your head up. Cataract Refract. Surg. Today. 2011. Available at: https://crstodayeurope.com/articles/2011-apr/operate-withyour-head-up/ (accessed 27 Januar 2022).

38. Weinstock R.J., Diakonis V.F., Schwartz A.J., Weinstock A.J. Heads-up cataract surgery: complication rates, surgical duration, and comparison with traditional microscopes. J. Refract Surg. 2019; 35 (5): 318–22. doi: 10.3928/1081597X20190410-02

39. Leica Microsystems. IOL Guidance Systems. IOLcompass & 3D TrueGuide. Available at: https://downloads.leica-microsystems.com/IOLcompass/ Brochures/IOL%20guidance%20brochure_en.pdf (accessed 5 Nov. 2022).

40. Mohamed Y.H., Uematsu M., Inoue D., Kitaoka T. First experience of nDSAEK with heads-up surgery: a case report. Medicine (Baltimore). 2017; 96 (19): e 6906. doi: 10.1097/MD.0000000000006906

41. Hamasaki I., Shibata K., Shimizu T., et al. Lights-out surgery for strabismus using a heads-up 3D vision system. Acta Med. Okayama. 2019; 73 (3): 229–33. doi: 10.18926/AMO/56865

42. Dutra-Medeiros M., Nascimento J., Henriques J., et al. Three-dimensional head-mounted display system for ophthalmic surgical procedures. Retina. 2017; 37 (7): 1411–4. doi: 10.1097/IAE.0000000000001514

43. Dutra-Medeiros M., Moura-Coelho N., Nascimento J., et al. Correspondence three-dimensional (3D) head-mounted display systems in ophthalmic surgery — first reports. Retina. 2017; 37 (7): 1411–4. doi: 10.1097/IAE.0000000000001514

44. Lowenstein A., Schneider R., Barak A. First look: a head-mounted OR display. Review of ophthalmology. 2019; 1–5. Available at: https://www. reviewofophthalmology.com/article/first-look-a-headmounted-or-display

45. Korot E., Thanos A., Todorich B., et al. Use of the Avegant Glyph head-mounted virtual retinal projection display to perform vitreoretinal surgery. J. Vitreoretin Dis. Available at: https://journals.sagepub.com/ doi/10.1177/2474126417738613 (accessed 28 December).

46. Mendez B.M., Chiodo M.V., Vandevender D., Patel P.A. Heads-up 3D microscopy: an ergonomic and educational approach to microsurgery. Plast. Reconstr. Surg. Glob. Open. 2016; 4(5): e717. doi: 10.1097/ GOX.0000000000000727

47. Eckardt C., Paulo E.B. Heads-up surgery for vitreoretinal procedures: an experimental and clinical study. Retina, 2016 36 (1): 137–47. doi: 10.1097/ IAE.0000000000000689

48. Freeman W.R., Chen K.C., Ho J., et al. Resolution, depth of field, and physician satisfaction during digitally assisted vitreoretinal surgery. Retina. 2019; 39 (9): 1768–71. doi: 10.1097/IAE.0000000000002236

49. Yoshihiro Y. Seeing the world through 3-D glasses: Grab some pearls for the coming world of 3-D heads-up surgery. Retina Today. Available at: https:// assets.bmctoday.net/retinatoday/pdfs/1016RT_Cover_Yonekawa.pdf

50. Shuhaiber J. H. Augmented reality in surgery. Arch. Surg. 2004; 139 (2): 170–4. doi: 10.1001/archsurg.139.2.170


Review

For citations:


Stebnev V.S., Zhuravlev A.V. Traditional analogue vs. three-dimensional digital visualization used in ophthalmic surgery. Russian Ophthalmological Journal. 2023;16(1):168-174. (In Russ.) https://doi.org/10.21516/2072-0076-2023-16-1-168-174

Views: 527


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)