Preview

Russian Ophthalmological Journal

Advanced search

Application of standard keratometry values obtained from keratotopographic mapping data to calculate the optical power of a multifocal intraocular lens

https://doi.org/10.21516/2072-0076-2024-17-4-62-69

Abstract

Purpose of the study is to determine the zones of standard keratometry according to keratotopography data, which will allow for more accurate calculation of multifocal IOL using 10 formulas.

Material and methods. The study included 55 patients (55 eyes) who underwent phacoemulsification of cataract or refractive lensectomy with femtolaser accompaniment, implantation of multifocal IOL (Acrysof IQ PanOptix) and achieved the target refraction at different distances. Retrospective calculation of the optical power of the IOL was carried out using biometric data from OA-2000 and keratometric indicators of Pentacam (zones from 0.5 mm to 5 mm in increments of 0.5 mm on the Axial/Sagittal map centered on the apex and pupil) using 10 formulas (SRK/T, Holladay 1, Holladay 2, Haigis, Hoffer Q, Barrett 2 Universal, Olsen, Kane, EVO ver. 2.0, Hill RBF ver. 3.0). For each combination of zone/keratometry value/formula, the average error of postoperative predicted refraction, its difference from zero (Wilcoxon criterion), the median value taking into account the sign, the mean (MAE) and median (MedAE) absolute errors in calculating the spherical equivalent of the IOL, the standard deviation of the mean absolute error (SD) were calculated.

Results. All formulas had a shift to myopic refraction, except for the Haigis formula, which shifted towards hyperopia. The absence of a significant difference from zero was shown only by the Kane formula in zones 3.5, 4.5–5.0 mm when centered on the apex and in zones 0.5, 1.5, 2.5–5.5 mm when centered on the pupil. The highest values of MAE were found in Haigis and Olsen formulas, and the minimum values were observed in most formulas in the 4.5–5.0 mm zones. The lowest MedAE values in all ranges were shown by the formulas Kane, EVO, Holladay 1 and Holladay 2. The minimum SD values were found for the formulas Kane, EVO, Holladay 1 and Holladay 2.

Conclusion. The Kane formula turned out to be the most accurate in the 4.5–5.0 mm zone. This is followed by the EVO 2 and Holladay 1 formulas in the 4.0 mm zone. The Haigis formula turned out to be the least accurate. The remaining formulas can be recommended for use with SimK Pentacam data in 4.0–5.0 mm zones.

About the Authors

S. V. Shukhaev
Saint Petersburg Branch of the S.N. Fedorov NMRC “MNTK “Eye Microsurgery”
Russian Federation

Serdey V. Shukhaev — Cand. of Med. Sci., ophthalmologist.

21, Hashek St., Saint-Petersburg, 192283



E. V. Boiko
Saint Petersburg Branch of the S.N. Fedorov NMRC “MNTK “Eye Microsurgery”; Mechnikov North-West State Medical University; Saint Petersburg University
Russian Federation

Ernest V. Boiko — Dr. of Med. Sci., professor, director MNTK “Eye Microsurgery, head of chair of ophthalmology Mechnikov North-West SMU, professor of chair of ophthalmology and otorhinolaryngology Saint Petersburg U.

21, Hashek St., Saint-Petersburg, 192283; 41, Kirochnaya St., Saint-Petersburg, 191015; 7–9, Universitetskaya Embankment, Saint-Petersburg, 199034



Yu. M. Petrosyan
Saint Petersburg Branch of the S.N. Fedorov NMRC “MNTK “Eye Microsurgery”; Mechnikov North-West State Medical University
Russian Federation

Yury M. Petrosyan — ophthalmologist MNTK “Eye Microsurgery, PhD student of chair of ophthalmology Mechnikov North-West SMU.

21, Hashek St., Saint-Petersburg, 192283; 41, Kirochnaya St., Saint-Petersburg, 191015



A. V. Molodkin
Saint Petersburg Branch of the S.N. Fedorov NMRC “MNTK “Eye Microsurgery”
Russian Federation

Anton V. Molodkin — ophthalmologist.

21, Hashek St., Saint-Petersburg, 192283



References

1. Malyugin B.E., Morozova T.A. A Review of historical aspects and modern trends in multifocal intraocular correction. Ophthalmic surgery. 2004; 3: 23–9 (In Russ.).

2. Morozova T.A., Pokrovskiy D.F., Medvedev I.B., Kerimov T.Z. Modern aspects of multifocal intraocular correction: a review. Annals of the Russian academy of medical sciences. 2017; 72 (4): 268–75 (In Russ.). doi: 10.15690/vramn835

3. Boiko E.V., Vinnitskiy D.A. Rehabilitation of patients after implantation of bifocal and trifocal intraocular lens. Fyodorov Journal of Ophthalmic Surgery. 2018; 2: 67–74 (In Russ.). doi: 10.25276/0235-4160-2018-2-67-74

4. Malyugin B.E., Sobolev N.P., Fomina O.V. Visual assessment performance after implantation of a new trifocal intraocular lens. Fyodorov journal of ophthalmic surgery. 2018; 4: 6–14 (In Russ.). doi: 10.25276/0235-4160-2017-4-6-14

5. Belikova EI, Borzykh V.A. Results of trifocal intraocular lenses implantation in patients with cataract and presbyopia. Ophthalmology in Russia. 2018; 15 (3): 248–55 (In Russ.). doi: 10.18008/1816-5095-2018-3-248-255

6. Doga A.V., Maychuk N.V., Mushkova I.A., Shamsetdinova L.T. Causes, prevention and correction of refractive errors after phacoemulsification with intraocular lens implantation. Vestnik oftal’mologii. 2019; 135 (6): 83–90 (In Russ.). doi: 10.17116/oftalma201913506183

7. Pershin К.B., Pashinova N.F., Likh I.A., Tsygankov А.Yu., Legkikh S.L. Intraocular lenses optic power calculation in extremely short eyes. Ophthalmology in Russia. 2022; 19 (1): 91–7 (In Russ.). doi: 10.18008/1816-5095-2022-1-91-97

8. Trubilin V.N., Il'inskaya I.A. Determination of corneal optical power using various research methods. Literature review. Kataraktal'naya i refrakcionnaya khirurgiya. 2014; 14 (2): 4–9 (In Russ.).

9. Mehravaran S, Asgari S, Bigdeli S, Shahnazi A, Hashemi H. Keratometry with five different techniques: a study of device repeatability and inter-device agreement. International Ophthalmology. 2014; 34 (4): 869–75. doi:10.1007/s10792-013-9895-3

10. Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry. J Cataract Refract Surg. 2011 Jan; 37 (1): 63–71. doi: 10.1016/j.jcrs.2010.07.032

11. Nemeth G, Modis L. Ocular measurements of a swept-source biometer: Repeatability data and comparison with an optical low-coherence interferometry biometer. J Cataract Refract Surg. 2019 Jun; 45 (6): 789–7. doi: 10.1016/j.jcrs.2018.12.018

12. Savini G, Hoffer KJ, Schiano Lomoriello D, Ducoli P. Simulated keratometry versus total corneal power by ray tracing. Cornea. 2017; 36 (11): 1368–72. doi:10.1097/ico.0000000000001343

13. Kiseleva T.N., Oganesyan O.G., Romanova L.I., Milash S.V., Penkina A.V. Optical biometry of the eye: the principle and the diagnostic potential of the method. Russian pediatric ophthalmology. 2017; 12 (1): 35–42 (In Russ.). doi: 10.18821/1993-1859-2017-12-1-35-42

14. Kulikov A.N., Kokareva E.V., Kotova N.A. Comparison of the results of the eye biometrics using different instruments. Pacific Medical Journal. 2017; 2: 53–4 (In Russ.). doi: 10.17238/PmJ1609-1175.2017.2.53–55

15. Mukhija R, Gupta N. Advances in anterior segment examination. Community Eye Health. 2019; 32 (107): S5–S6. PMID: 32123483.

16. Kanclerz P, Khoramnia R, Wang X. Current developments in corneal topography and tomography. Diagnostics. 2021; 11 (8): 1466. doi: 10.3390/diagnostics11081466

17. Fan R, Chan TC, Prakash G, Jhanji V. Applications of corneal topography and tomography: a review. Clinical & experimental ophthalmology. 2018; 46 (2): 133–46. doi: 10.1111/ceo.13136

18. Holladay JT. Corneal topography using the Holladay Diagnostic Summary. J Cataract Refract Surg. 1997; 23 (2): 209–21. doi: 0.1016/S0886-3350(97)80344-6

19. Grein HJ, Schmidt O, Ritsche A. Reproducibility of subjective refraction measurement. Ophthalmologe. 2014; 111 (11): 1057-64. doi: 10.1007/s00347-014-3064-6

20. Wang L, Koch DD, Hill W, Abulafia A. Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes. J Cataract Refract Surg. 2017; 43 (8): 999–1002. doi: 10.1016/j.jcrs.2017.08.003

21. Holladay JT, Wilcox RR, Koch DD, Wang L. Review and recommendations for univariate statistical analysis of spherical equivalent prediction error for IOL power calculations. J Cataract Refract Surg. 2021; 47 (1): 65–77. doi: 10.1097/j.jcrs.0000000000000370

22. Connell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol. 2019; 4 (1): e000251. doi: 10.1136/bmjophth-2018-000251

23. Savini G, Maita M, Hoffer KJ, et al. Comparison of 13 formulas for IOL power calculation with surements partial coherence interferometry. Br J Ophthalmol. 2021; 105 (4): 484–9. doi: 10.1136/bjophthalmol-2020-316193

24. Hipólito-Fernandes D, Luís M, Gil P, et al. VRF-G, a new intraocular lens power calculation formula: A 13-Formulas arisony. Clin Ophthalmol. 2020; 14: 4395–402. doi: 10.2147/OPTH.S290125

25. Lundström M, Dickman M, Henry Y, et al. Risk factors for refractive error after cataract surgery: Analysis of 282 811 cataract extractions reported to the European Registry of Quality Outcomes for cataract and refractive surgery. J Cataract Refract Surg. 2018; 44 (4): 447–52. doi: 10.1016/j.jcrs.2018.01.031

26. Savini G, Hoffer KJ, Balducci N, Barboni P, Schiano-Lomoriello D. Comparison of formula accuracy for intraocular lens power calculation based on measurements by a swept-source optical coherence tomography optical biometer. J Cataract Refract Surg. 2020; 46 (1): 27–33. doi: 10.1016/j.jcrs.2019.08.044

27. Kane JX, Heerden A, Atik A, Petsoglou C. Intraocular lens power formula accuracy: Comparison of 7 formulas. J Cataract Refract Surg. 2016; 42 (10): 1490–500. doi: 10.1016/j.jcrs.2016.07.021

28. Darcy K, Gunn D, Tavassoli S, Sparrow J, Kane JX. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service. J Cataract Refract Surg. 2020; 46 (1): 2–7. doi: 10.1016/j.jcrs.2019.08.014

29. Shammas HJ, Hoffer KJ, Shammas MC. Scheimpflug photography keratometry readings for routine intraocular lens power calculation. J Cataract Refract Surg. 2009; 35 (2): 330–4. doi: 10.1016/j.jcrs.2008.10.041

30. Savini G, Barboni P, Carbonelli M, Hoffer KJ. Accuracy of a dual Scheimpflug Analyzer and a Corneal Topography System for intraocular lens power calculation in unoperated eyes. J Cataract Refract Surg. 2011; 37 (1): 72–6. doi: 10.1016/j.jcrs.2010.08.036

31. Saad E, Shammas MC, Shammas HJ. Scheimpflug corneal power measurements for intraocular lens power calculation in cataract surgery. Am J Ophthalmol. 2013; 156 (3): 460–7. doi: 10.1016/j.ajo.2013.04.035

32. Kirgiz A, Atalay K, Kaldirim H, et al. Scheimpflug camera combined with placido-disk corneal topography and optical biometry for intraocular lens power calculation. Int Ophthalmol. 2017; 37 (4): 781–6. doi: 10.1007/s10792-016-0330-4

33. Savini G, Barboni P, Carbonelli M, Hoffer KJ. Comparison of methods to measure corneal power for intraocular lens power calculation using a rotating Scheimpflug camera. J Cataract Refract Surg. 2013; 39 (4): 598–604. doi: 10.1016/j.jcrs.2012.11.022


Review

For citations:


Shukhaev S.V., Boiko E.V., Petrosyan Yu.M., Molodkin A.V. Application of standard keratometry values obtained from keratotopographic mapping data to calculate the optical power of a multifocal intraocular lens. Russian Ophthalmological Journal. 2024;17(4):62-69. (In Russ.) https://doi.org/10.21516/2072-0076-2024-17-4-62-69

Views: 362


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)