Preview

Russian Ophthalmological Journal

Advanced search

Micropulse cyclophotocoagulation in the treatment of primary open-angle glaucoma and congenital glaucoma. Part 1: hypotensive effect mechanisms, modern procedure protocol

https://doi.org/10.21516/2072-0076-2024-17-4-111-115

Abstract

Micropulse cyclophotocoagulation (MP-CPC) refers to interventions that reduce intraocular pressure by laser exposure on the ciliary body, while the term “coagulation” in its name does not reflect the essence of the procedure, but is inherited from the previous continuous laser version. Unlike other methods that target ciliary body, MP-CPC is considered the safest procedure due to its special laser action mode and the absence of a coagulative effect. In the first part of our review, we would like to focus on the history, mechanisms of action and procedure protocol of micropulse cyclophotocoagulation.

About the Authors

O. V. Ermakova
S. Fedorov Eye Microsurgery Center, Novosibirsk Branch
Russian Federation

Olga V. Ermakova — Сand. of Med. Sci., head of 2nd ophthalmology department.

10, Kolkhidskaya St., Novosibirsk, 630096



E. A. Ragozina
S. Fedorov Eye Microsurgery Center, Novosibirsk Branch
Russian Federation

Ekaterina A. Ragozina — ophthalmologist.

10, Kolkhidskaya St., Novosibirsk, 630096



References

1. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121 (11): 2081–90. doi: 10.1016/j.ophtha.2014.05.013

2. Dastiridou AI, Katsanos A, Denis P, et al. Cyclodestructive procedures in glaucoma: A review of current and emerging options. Adv Ther. 2018; 35 (12): 2103–27. doi: 10.1007/s12325-018-0837-3

3. Beckman H, Kinoshita A, Rota AN, Sugar HS. Transscleral ruby laser irradiation of the ciliary body in the treatment of intractable glaucoma. Trans Am Acad Ophthalmol Otolaryngol. 1972 Mar-Apr; 76 (2): 423–36. PMID: 4677450.

4. Souissi S, Le Mer Y, Metge F, et al. An update on continuous-wave cyclophotocoagulation (CW-CPC) and micropulse transscleral laser treatment (MP-TLT) for adult and paediatric refractory glaucoma. Acta Ophthalmol. 2021; 99 (5): e621-e653. doi: 10.1111/aos.14661

5. Michelessi M, Bicket AK, Lindsley K. Cyclodestructive procedures for non-refractory glaucoma. Cochrane Database Syst Rev. 2018; 4 (4): CD009313. doi: 10.1002/14651858

6. Aquino MC, Barton K, Tan AM, et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin Exp Ophthalmol. 2015; 43 (1): 40–6. doi: 10.1111/ceo.12360

7. Williams AL, Moster MR, Rahmatnejad K, et al. Clinical efficacy and safety profile of micropulse transscleral cyclophotocoagulation in refractory glaucoma. J Glaucoma. 2018; 27 (5): 445–49. doi: 10.1097/IJG.0000000000000934

8. Moussa K, Feinstein M, Pekmezci M, et al. Histologic changes following continuous wave and micropulse transscleral cyclophotocoagulation: A randomized comparative study. Transl Vis Sci Technol. 2020; 9 (5): 22. doi: 10.1167/tvst.9.5.22

9. Ma A, Yu SWY, Wong JKW. Micropulse laser for the treatment of glaucoma: A literature review. Surv Ophthalmol. 2019; 64 (4): 486–97. doi: 10.1016/j.survophthal.2019.01.001

10. Dastiridou AI, Katsanos A, Denis P, et al. Cyclodestructive procedures in glaucoma: a review of current and emerging options. Adv Ther. 2018; 35 (12): 2103–27. doi: 10.1007/s12325-018-0837-3

11. Abdelmassih Y, Tomey K, Khoueir Z. Micropulse transscleral cyclophotocoagulation. J Curr Glaucoma Pract. 2021; 15 (1): 1–7. doi: 10.5005/jp-journals-10078-1298

12. Tsujisawa T, Ishikawa H, Uga S, et al. Morphological changes and potential mechanisms of intraocular pressure reduction after micropulse transscleral cyclophotocoagulation in rabbits. Ophthalmic Res. 2022; 65 (5): 595–602. doi: 10.1159/000510596

13. Maslin JS, Chen PP, Sinard J, Nguyen AT, Noecker R. Histopathologic changes in cadaver eyes after micropulse and continuous wave transscleral cyclophotocoagulation. Can J Ophthalmol. 2020; 55 (4): 330–35. doi: 10.1016/j.jcjo.2020.03.010

14. Liu GJ, Mizukawa A, Okisaka S. Mechanism of intraocular pressure decrease after contact transscleral continuous-wave Nd:YAG laser cyclophotocoagulation. Ophthalmic Res. 1994; 26 (2): 65–79. doi: 10.1159/000267395

15. Schubert HD, Agarwala A, Arbizo V. Changes in aqueous outflow after in vitro neodymium: yttrium aluminium garnet laser cyclophotocoagulation. Invest Ophthalmol Vis Sci. 1990 Sep; 31 (9): 1834–8. PMID: 2211029.

16. Johnson M, McLaren JW, Overby DR. Unconventional aqueous humour outflow: A review. Exp Eye Res. 2017; 158: 94–111. doi: 10.1016/j.exer.2016.01.017

17. Barac R, Vuzitas M, Balta F. Choroidal thickness increase after micropulse transscleral cyclophotocoagulation. Rom J Ophthalmol. 2018 Apr-Jun; 62 (2): 144–8. PMID: 30206558.

18. Lindsey JD, Weinreb RN. Identification of the mouse uveoscleral outflow pathway using fluorescent dextran. Invest Ophthalmol Vis Sci. 2002 Jul; 43 (7): 2201–5. PMID: 12091417.

19. Nemoto H, Honjo M, Okamoto M, Sugimoto K, Aihara M. Potential mechanisms of intraocular pressure reduction by micropulse transscleral cyclophotocoagulation in rabbit eyes. Invest Ophthalmol Vis Sci. 2022; 63 (6): 3.

20. Sanchez FG, Peirano-Bonomi JC, Grippo T.M. Micropulse transscleral cyclophotocoagulation: a hypothesis for the ideal parameters. Med Hypothesis Discov Innov Ophthalmol J. 2018 Fall; 7 (3): 94–100. PMID: 30386797.

21. Johnstone MA, Song S, Padilla S, et al. Microscope real-time video (MRTV), high-resolution OCT (HR-OCT) & histopathology (HP) to assess how transcleral micropulse laser (TML) affects the sclera, ciliary body (CB), muscle (CM), secretory epithelium (CBSE), suprachoroidal space (SCS) & aqueous outflow system. Invest Ophthalmol Vis Sci. 2019; 60 (9): 2825. https://iovs.arvojournals.org/article.aspx?articleid=2745987

22. Lee JH, Shi Y, Amoozgar B, et al. Outcome of micropulse laser transscleral cyclophotocoagulation on pediatric versus adult glaucoma patients. J Glaucoma. 2017; 26 (10): 936–39. doi: 10.1097/IJG.0000000000000757

23. Sarrafpour S, Saleh D, Ayoub S, Radcliffe NM. Micropulse transscleral cyclophotocoagulation: A look at long-term effectiveness and outcomes. Ophthalmol Glaucoma. 2019; 2 (3): 167–71. doi: 10.1016/j.ogla.2019.02.002

24. Khodzhaev N.S., Sidorova A.V., Starostina A.V., Eliseeva M.A. Micropulse transscleral cyclophotocoagulation for the treatment of glaucoma. Russian Ophthalmological Journal. 2020; 13 (2): 105–11 (In Russ.). https://doi.org/10.21516/2072-0076-2020-13-2-105-111

25. Yelenskiy A, Gillette TB, Arosemena A, et al. Patient outcomes following micropulse trans-scleral cyclophotocoagulation: intermediate-term results. J Glaucoma. 2018; 27 (10): 920–5. doi:10.1097/IJG.0000000000001023

26. Emanuel ME, Grover DS, Fellman RL, et al. Micropulse cyclophotocoagulation: initial results in refractory glaucoma. J Glaucoma. 2017; 26 (8): 726–9. doi: 10.1097/IJG.0000000000000715

27. Grippo TM, Sanchez FG, Stauffer J, Marcellino G. MicroPulse® transscleral laser therapy - fluence may explain variability in clinical outcomes: A literature review and analysis. Clin Ophthalmol. 2021; 15: 2411–19. doi: 10.2147/OPTH.S313875

28. Grippo TM, de Crom RMPC, Giovingo M, et al. Evidence-based consensus guidelines series for Micro-Pulse transscleral laser therapy: Dosimetry and patient selection. Clin Ophthalmol. 2022; 16: 1837–46. doi: 10.2147/OPTH.S365647

29. Sami A, Aboulnasr TT, El-Shahed AF. Efficacy of a novel Zig Zag application pattern for Micro-Pulse trans-scleral cyclo-photocoagulation for the management of glaucoma. J Glaucoma. 2023; 32 (5): 382–88. doi: 10.1097/IJG.0000000000002095

30. Balendiran V, Landreneau J, An J. MicroPulse transscleral laser therapy dosimetry utilizing the revised P3 delivery device: A randomized controlled trial. Ophthalmol Glaucoma. 2022; Sep 28: S2589-4196(22)00189-2. doi: 10.1016/j.ogla.2022.09.004

31. Akiyama T, Fujishiro T, Sugimoto K, et al. Short-term outcomes of micropulse transscleral laser therapy using the revised delivery probe in refractory glaucoma. Jpn J Ophthalmol. 2022; 66 (6): 549–58. doi: 10.1007/s10384-022-00938-9


Review

For citations:


Ermakova O.V., Ragozina E.A. Micropulse cyclophotocoagulation in the treatment of primary open-angle glaucoma and congenital glaucoma. Part 1: hypotensive effect mechanisms, modern procedure protocol. Russian Ophthalmological Journal. 2024;17(4):111-115. (In Russ.) https://doi.org/10.21516/2072-0076-2024-17-4-111-115

Views: 273


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)