Tear fluid as a source of biomarkers for glaucoma
https://doi.org/10.21516/2072-0076-2025-18-1-163-170
Abstract
Review presents the analysis of literature data about metabolic changes in tear fluid (TF) of patients with glaucoma. Data for mass-spectrometry of TF proteome, cytokine profile, neurotrophic factors, proteinases and their inhibitors, extracellular vesicles, miRNA, catecholamines, endothelins are presented. Changes of some of these metabolic parameters outpace clinical manifestation of glaucoma and thus may have prognostic value. TF composition vary depending on the glaucoma stage. The anti-glaucomatous therapy also has influence on the TF composition due to the preservatives in the hypotensive formulations and drug substances themselves via different pathways. TF analyses can be used for the personal therapy adjustment. Data concerning the difference of TF composition in primary open-angle glaucoma and pseudoexfoliative glaucoma confirm the difference of their pathogenesis. Pseudoexfoliative syndrome with glaucoma and without one are also characterized by different alternations in TF. The data presented confirm the diagnostic value of TF as a source of biomarkers for the prognosis of glaucoma development and for the personal therapy adjustment.
About the Authors
N. B. ChesnokovaRussian Federation
Natalya B. Chesnokova — Dr. of Biol. Sci., professor, principal researcher, department of pathophysiology and biochemistry.
14/19, Sadovaya Chernogryazskaya St., Moscow, 105062
T. A. Pavlenko
Russian Federation
Tatyana A. Pavlenko — Cand. of Med. Sci., head of the department of patophysiology and biochemistry.
14/19, Sadovaya Chernogryazskaya St., Moscow, 105062
O. V. Beznos
Russian Federation
Olga V. Beznos — physician, department of patophysiology and biochemistry.
14/19, Sadovaya Chernogryazskaya St., Moscow, 105062
References
1. Casemore RK, Wolffsohn JS, Dutta D. Human tear protein analysis using a quantitative microfluidic system: A pilot study. Eye Contact Lens. 2023; 49 (11): 498-504. doi: 10.1097/ICL.0000000000001036
2. Moshetova L.K., Volkov O.A. Modern conception of lacrimal fluid, it's role in diagnostics. Klinicheskaya oftalmologia. 2004; 5 (4): 138-41 (In Russ.).
3. Gachon AM, Richard J, Dastugue B. Human tears: Normal protein pattern and individual protein determinations in adults. Curr Eye Res. 1982; 2 (5): 301-8. doi: 10.3109/02713688209000774
4. Nättinen J, Aapola U, Nukareddy P, Uusitalo H. Clinical tear fluid proteomics — A novel tool in glaucoma research. Int J Mol Sci. 2022; 23 (15): 8136. doi: 10.3390/ijms23158136
5. Ponzini E, Santambrogio C, De Palma A, et al. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. Mass Spectrom Rev. 2022; 41 (5): 842-60. doi: 10.1002/mas.21691
6. Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J. 2021; 12: 449-75. doi: 10.1007/s13167-021-00265-y
7. Baksheeva VE, Tiulina VV, Iomdina EN, et al. Tear nanoDSF denaturation profile is predictive of glaucoma. Int J Mol Sci. 2023; 24 (8): 7132. doi: 10.3390/ijms24087132
8. Nättinen J, Jylhä A, Aapola U, et al. Age-associated changes in human tear proteome. Clin Proteom. 2019; 16: 11. doi: 10.1186/s12014-019-9233-5
9. Pieragostino D, Agnifili L, Fasanella V, et al. Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naive to therapy. Mol Biosyst. 2013; 9 (6): 1108-16. doi: 10.1039/c3mb25463a.2013;12
10. Pieragostino D, Bucci S, Agnifili L, et al. Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma. Mol Biosyst. 2012; 8: 1017-28. doi: 10.1039/C1MB05357D
11. Rossi C, Cicalini I, Cufaro MC, et al. Multi-omics approach for studying tears in treatment-naive glaucoma patients. Int J Mol. Sci. 2019; 20 (16): 4029. doi: 10.3390/ijms20164029
12. Calandrella N, De Seta C, Scarsella G, Risuleo G. Carnitine reduces the lipoperoxidative damage of the membrane and apoptosis after induction of cell stress in experimental glaucoma. Cell Death Dis. 2010; 1 (8): e62. doi: 10.1038/cddis.2010.40
13. Wong TT, Zhou L, Li J, et al. Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Invest Ophthalmol Vis Sci. 2011; 52: 7385-91. doi: 10.1167/iovs.10-6532
14. Funke S, Beck S, Lorenz K, et al. Analysis of the effects of preservative-free Tafluprost on the tear proteome. Am J Transl Res. 2016; 8: 4025-39.
15. Nattinen J, Jylha A, Aapola U, et al. Patient stratification in clinical glaucoma trials using the individual tear proteome. Sci Rep. 2018; 8: 12038. doi: 10.1038/s41598-018-30369-x
16. Vaajanen A, Nattinen J, Aapola U, Gielen F, Uusitalo H. The effect of successful trabeculectomy on the ocular surface and tear proteomics — a prospective cohort study with 1-year follow-up. Acta Ophthalmol. 2021; 99: 160-70. doi: 10.1111/aos.14526
17. Marola OJ, Syc-Mazurek SB, Howell GR, Libby RT. Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation. Cell Death Dis. 2020; 11 (9): 811. doi: 10.1038/s41419-020-02990-0
18. Pavlenko T.A., Chesnokova N.B., Davydova N.G., et al. Level of tear endothelin-1 and plasminogen in patients with glaucoma and proliferative diabetic retinopathy. Vestnik Oftal'mologii. 2013; 129 (4): 20-3 (In Russ.).
19. Baranov V.I., Markova E.V. Determination of vascular endothelial dysfunction markers in the tear fluid in pseudoexfoliation glaucoma. Med Bull Bashkortostan. 2018; 13 (1): 58-61 (In Russ.).
20. Slepova O.S., Arapiev M.U., Lovpache D.N., Balatskaya N.V., Kulikova I.G. Specifics of local and systemic cytokine profile in healthy people of different ages and patients with early stage of primary open-angle glaucoma. National journal Glaucoma. 2016; 15 (1): 3—12 (In Russ.). doi:10.1097/00004647-199605000-00004
21. Chernykh V.V., Ermakova O.V., Orlov N.B., et al. Features of the content of proinflammatory cytokines in lacrimal and intraocular fluid in patients with primary open-angle glaucoma. Siberian Scientific medical journal. 2018; 38 (5): 5—10 (In Russ.).
22. Agarkov N.M., Chukhraev A.M., Yablokova N.V. Diagnosis and prediction of primary openangle glaucoma by the level of local cytokine. Meditsinskaya Immunologiya. 2019; 21 (6): 1163-8 (In Russ.). doi: 10.15789/1563-0625-2019-6-1163-1168
23. Khokhlova A.S., Kiriyenko A.V., Filina N.V., Markelova E.V. Local cytokine regulation at different stages of primary open-angle glaucoma. Pacific Medical Journal. 2014; 4: 46-8 (In Russ.).
24. Martinez-de-la-Casa JM, Perez-Bartolome F, Urcelay E, et al. Tear cytokine profile of glaucoma patients treated with preservative-free or preserved latanoprost. Ocul Surf. 2017; 15 (4): 723-9. doi: 10.1016/j.jtos.2017.03.004
25. Manni G, Centofanti M, Oddone F, Parravano M, Bucci MG. Interleukin-1p tear concentration in glaucomatous and ocular hypertensive patients treated with preservative-free nonselective beta-blockers. Am J Ophthalmol. 2005; 139: 72-7. doi:10.1016/j.ajo.2004.08.028
26. Reddy S, Sahay P, Padhy D, et al. Tear biomarkers in latanoprost and bimatoprost treated eyes. PLoS One. 2018; 13 (8): e0201740. doi:10.1371/journal.pone.0201740
27. Benitez-Del-Castillo J, Cantu-Dibildox J, Sanz-Gonzalez SM, Zanon-Moreno V, Pinazo-Duran MD. Cytokine expression in tears of patients with glaucoma or dry eye disease: a prospective, observational cohort study. Eur J Ophthalmol. 2019; 29 (4): 437-43. doi: 10.1177/1120672118795399
28. Sahay P, Reddy S, Prusty BK, Modak R, Rao A. TGFp1, MMPs and cytokines profiles in ocular surface: possible tear biomarkers for pseudoexfoliation. PLoS One. 2021; 16 (4): e0249759. doi: 10.1371/journal.pone.0249759
29. Csosz E, Deak E, T0th N, et al. Comparative analysis of cytokine profiles of glaucomatous tears and aqueous humour reveals potential biomarkers for trabeculectomy complications. FEBS Open Bio. 2019; 9: 1020-8. doi: 10.1002/2211-5463.12637
30. Burgos-Blasco B, Vidal-Villegas B, Saenz-Frances F, et al. Cytokine profile in tear and aqueous humor of primary open-angle patients as a prognostic factor for trabeculectomy outcome. Eur J Ophthalmol. 2021: 11206721211055964. doi: 10.1177/11206721211055965
31. Lambuk L, Mohd Lazaldin MA, Ahmad S, et al. Brain-derived neurotrophic factor-mediated neuroprotection in glaucoma: a review of current state of the art. Front Pharmacol. 2022; 13: 875662. doi: 10.3389/fphar.2022.875662
32. Slepova O.S., Frolov M.A., Morozova N.S., Frolov A.M., Lovpache D.N. Markers of Fas-mediated apoptosis in primary open-angle glaucoma and opportunities of their pharmacological correction. Vestnik Oftal'mologii. 2012; 128 (4): 27-31 (In Russ.).
33. Wu Y, Hu Y, Jiang N, et al. Quantitative brain-derived neurotrophic factor lateral flow assay for point-of-care detection of glaucoma. Lab Chip. 2022; 22 (18): 3521-32. doi: 10.1039/d2lc00431c
34. Shpak AA, Guekht AB, Druzhkova TA, et al. Brain-derived neurotrophic factor in patients with primary open-angle glaucoma and age-related cataract. Curr Eye Res. 2018; 43: 224-31. doi: 10.1080/02713683.2017.1396617
35. Ghaffariyeh A, Honarpisheh N, Shakiba Y, et al. Brain-derived neurotrophic factor in patients with normal-tension glaucoma. Optometry. 2009; 80: 635-8. doi: 10.1016/j.optm.2008.09.014
36. Gabdrakhmanova A.F., Aznabaeva L.F., Abizgil'dina G.Sh., Kurbanov S.A. Molecular mechanisms of neuroretinoprotection in primary open-angle glaucoma. Vestnik oftal'mologii. 2018; 134 (5): 54-60 (In Russ.). doi:10.17116/oftalma201813405154
37. Shpak AA, Guekht AB, Druzhkova TA, et al. Glial cell line-derived neurotrophic factor (GDNF) in patients with primary open-angle glaucoma and age-related cataract. Mol Vis. 2022; 28: 39-47.
38. Shpak AA, Guekht AB, Druzhkova TA, et al. Ciliary neurotrophic factor in patients with primary open-angle glaucoma and age-related cataract. 2017 Nov 17; 23: 799-809. PMID: 29225456.
39. de Souza GA, Godoy LM, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006; 7: R72. doi: 10.1186/gb-2006-7-8-r72
40. Kim MH, Lim SH. Matrix metalloproteinases and glaucoma. Biomolecules. 2022; 12 (10): 1368. doi: 10.3390/biom12101368
41. Reddy S, Sahay P, Padhy D, et al. Tear biomarkers in Latanoprost and Bimatoprost treated eyes. PLoS ONE. 2018; 13: e0201740. doi: 10.1371/journal.pone.0201740
42. Zaleska-Żmijewska A, Strzemecka E, Wawrzyniak ZM, Szaflik JP. Extracellular MMP-9-based assessment of ocular surface inflammation in patients with primary open-angle glaucoma. J Ophthalmol. 2019; 2019: 1240537. doi: 10.1155/2019/1240537
43. Yang Y, Huang C, Lin X, et al. 0.005% preservative-free Latanoprost induces dry eye-like ocular surface damage via promotion of inflammation in mice. Invest Ophthalmol Vis Sci. 2018; 59: 3375-84. doi: 10.1167/iovs.18-24013
44. Ito T, Ohguro H, Mamiya K, Ohguro I, Nakazawa M. Effects of antiglaucoma drops on MMP and TIMP balance in conjunctival and subconjunctival tissue. Invest Ophthalmol Vis Sci. 2006; 47: 823-30. doi: 10.1167/iovs.05-0902
45. Micera A, Di Zazzo A, Esposito G, et al. Age-related changes to human tear composition. Invest Ophthalmol Vis Sci. 2018; 59: 2024-31. doi: 10.1167/iovs.17-23358
46. Sahay P, Rao A, Padhy D, et al. Functional activity of Matrix Metalloproteinases 2 and 9 in tears of patients with glaucoma. Invest Ophthalmol Vis Sci. 2017; 58: BIO106-BIO113. doi: 10.1167/iovs.17-21723
47. Barcelona PF, Saragovi HU. A pro-nerve growth factor (proNGF) and NGF binding protein, a2-macroglobulin, differentially regulates p75 and TrkA receptors and is relevant to neurodegeneration ex vivo and in vivo. Mol Cell Biol. 2015; 35 (19): 3396-408. doi: 10.1128/MCB.00544-15
48. Chesnokova N.B., Pavlenko T.A., Beznos O.V., et al. Multifunctional protein Alpha2-macroglobulin in tear fluid and blood serum of patients with glaucoma. Ophthalmology in Russia. 2022; 19 (4): 835-40 (In Russ.). doi:10.18008/1816-5095-2022-4-835-840
49. Borovic D, Bendelic E, Chiselija D. Studiul sistemelor biochimice kinina-kalikreina şi renină--angiotensina in glaucomul primitiv cu unghi deschis [Study of kini-kallikrein and renin--angiotensin systems in patients with primary open angle glaucoma]. Oftalmologia. 2009; 53 (2): 61-8.
50. Pavlenko T.A., Chesnokova N.B., Davydova N.G., et al. Level of tear endothelin-1 and plasminogen in patients with glaucoma and proliferative diabetic retinopathy. Vestnik oftal'mologii. 2013; 129 (4): 20-3 (In Russ.).
51. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies ofextracellular vesicles 2018 (MISEV2018): a position statement ofthe International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7 (1): 1535750. doi: 10.1080/20013078.2018.1535750
52. Lucci C, De Groef L. On the other end of the line: extracellular vesicle-mediated communication in glaucoma. Front Neuroanat. 2023; 17: 1148956. doi: 10.3389/fnana.2023.1148956
53. Grigor'eva A.E., Tamkovich S.N., Eremina A.V., et al. Characteristics of exosomes and microparticles discovered in human tears. Biomeditsinskaya khimiya. 2016; 62 (1): 99-106 (In Russ.).
54. Tamkovich S, Grigor'eva A, Eremina A, et al. What information can be obtained from the tears of a patient with primary open angle glaucoma? Clin Chim Acta. 2019; 495: 529-37. doi: 10.1016/j.cca.2019.05.028
55. Dai S, Li F, Xu S, Hu J, Gao L. The important role of miR-1-3p in cancers. J Transl Med. 2023; 21 (1): 769. doi: 10.1186/s12967-023-04649-8
56. Katsioupa M, Kourampi I, Oikonomou E, et al. Novel biomarkers and their role in the diagnosis and prognosis of acute coronary syndrome. Life. 2023; 13 (10): 1992. doi: 10.3390/life13101992
57. Greene KM, Stamer WD, Liu Y. The role of microRNAs in glaucoma. Exp Eye Res. 2022; 215: 108909. doi: 10.1016/j.exer.2021.108909
58. Chan HW, Yang B, Wong W, et al. A pilot study on microRNA profile in tear fluid to predict response to anti-VEGF treatments for diabetic macular edema. J Clin Med. 2020; 9: 2920. doi: 10.3390/jcm9092920
59. Pinazo-Duran MD, Zan0n-Moreno V, Garcia-Villanueva C, et al. Biochemical-molecular-genetic biomarkers in the tear film, aqueous humor, and blood of primary open-angle glaucoma patients. Front Med. 2023; 10: 1157773. doi: 10.3389/fmed.2023.1157773
60. Raga-Cervera J, Bolarin JM, Millan JM, et al. miRNAs and genes involved in the interplay between ocular hypertension and primary open-angle glaucoma. Oxidative stress, inflammation, and apoptosis networks. J Clin Med. 2021; 10 (11): 2227. doi: 10.3390/jcm10112227
61. Pescosolido N, Parisi F, Russo P, Buomprisco G, Nebbioso M. Role of dopaminergic receptors in glaucomatous disease modulation. Biomed Res Int. 2013; 2013: 193048. doi: 10.1155/2013/193048
62. Sharma NS, Acharya SK, Nair AP, et al. Dopamine levels in human tear fluid. Indian J Ophthalmol. 2019; 67 (1): 38-41. doi: 10.4103/ijo.IJO_568_18
63. Zubareva T.V., Kiseleva Z.M. Catecholamine content of the lacrimal fluid of healthy people and glaucoma patients. Ophthalmologica. 1977; 175 (6): 339-44 (In Russ.). doi: 10.1159/000308678
64. Bogdanov V, Kim A, Nodel M, et al. A pilot study of changes in the level of catecholamines and the activity of α-2-macroglobulin in the tear fluid of patients with Parkinson's disease and Parkinsonian mice. Int J Mol Sci. 2021; 22 (9): 4736. doi: 10.3390/ijms22094736
65. Pavlenko T.A., Kim A.R., Kurina A.Yu., et al. Endothelins and dopamine levels in tears for assessment of neurovascular disorders in glaucoma. Vestnik oftal'mologii. 2018; 134 (4): 41-6 (In Russ.). doi:10.17116/oftalma201813404141
Review
For citations:
Chesnokova N.B., Pavlenko T.A., Beznos O.V. Tear fluid as a source of biomarkers for glaucoma. Russian Ophthalmological Journal. 2025;18(1):163-170. (In Russ.) https://doi.org/10.21516/2072-0076-2025-18-1-163-170