Preview

Russian Ophthalmological Journal

Advanced search

Genetic factors of myopia

https://doi.org/10.21516/2072-0076-2025-18-1-125-130

Abstract

The purpose of the work is to study the genetic features of myopia manifestation according to modern data of domestic and foreign literature. The analysis of recent publications on the issues of myopia genetics is presented. The review is performed using the keywords of this topic in the PubMed, Scopus, eLibrary.ru databases. Myopia is a complex condition with many genetic variants of development both according to the Mendelian type of inheritance and as a complex disease caused by the joint contribution of several polymorphic genes that interact or act independently. It is necessary to conduct further genetic studies in various regions of our country and abroad for the development of possible individual approaches to the treatment of myopia with the choice of the age of treatment initiation, as well as to the prevention of its occurrence and progression.

About the Authors

A. E. Aprelev
Orenburg State Medical University
Russian Federation

Alexander E. Aprelev — Dr. of Med. Sci., associate professor, head of chair of ophthalmology.

6, Sovetskaya St., Orenburg, 460000



S. V. Cherkasov
Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Orenburg Federal Research Center of the UrB RAS
Russian Federation

Sergey V. Cherkasov — Dr. of Med. Sci., professor, corresponding member of the Russian Academy of Sciences, principal researcher, head of laboratory of biomedical technologies.

11, Pionerskaya St., Orenburg, 460000



A. D. Chuprov
Orenburg branch of S. Fyodorov Eye Microsurgery Center
Russian Federation

Alexander D. Chuprov — Dr. of Med. Sci., professor, director.

17, Salmyshskaya St., Orenburg, 460047



V. E. Aprelev
Orenburg State Medical University
Russian Federation

Vadim E. Aprelev — Dr. of Med. Sci., assistant professor, chair of neurology and medical genetics.

6, Sovetskaya St., Orenburg, 460000



E. Y. Antokhin
Orenburg State Medical University
Russian Federation

Evgeniy Yu. Antokhin — Cand. of Med. Sci., assistant professor, head of chair of clinical psychology and psychotherapy.

6, Sovetskaya St., Orenburg, 460000



A. A. Aprelev
Orenburg State Medical University
Russian Federation

Alexandr A. Aprelev — clinical resident, chair of ophthalmology.

6, Sovetskaya St., Orenburg, 460000



References

1. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016 May; 123 (5): 1036–42. doi: 10.1016/j.ophtha.2016.01.006

2. Rong SS, Tang FY, Chu WK, et al. Genetic associations of primary angle-closure disease: A systematic review and meta-analysis. Ophthalmology. 2016 Jun; 123 (6): 1211–21. doi: 10.1016/j.ophtha.2015.12.027

3. Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis. 2017 Dec 31; 23: 1048–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757860/

4. Guggenheim JA, Mojarrad NG, Williams C, Flitcroft DI. Genetic prediction of myopia: prospects and challenges. Ophthalmic & Physiological Optics. 2017; 37: 549–56. https://doi.org/10.1111/opo.12403

5. Hensen F, Kutsche K, Kortüm F, et al. Genotype-phenotype correlation in children: The impact of FBN1 variants on pediatric Marfan care. Genes (Basel). 2020 Jul 15; 11 (7): 799. doi: 10.3390/genes11070799

6. Flitcroft DI, Loughman J, Wildsoet CF, Williams C, Guggenheim JA; CREAM Consortium. Novel myopia genes and pathways identified from syndromic forms of myopia. Invest Ophthalmol Vis Sci. 2018 Jan 1; 59 (1): 338–48. doi: 10.1167/iovs.17-22173

7. Favorova O.O., Bashinskaya V.V., Kulakova O.G., Boyko A.N., Favorov A.V. Genome-wide association study as a method to analyze the genome architecture in polygenic diseases, with the example of multiple sclerosis. Molecular biology. 2014; 48 (4): 496–507 (In Russ.). https://doi.org/10.1134/S0026893314040037

8. Markossian G.A., Tarutta E.P., Panteleeva O.A., Maksimova M.V. State of the art of genetic studies of myopia. Russian ophthalmological journal. 2012; 3: 103–6 (In Russ.).

9. Lyhne N, Sjølie AK, Kyvik KO, Green A. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20–45 year old twins. Br J Ophthalmol. 2001 Dec; 85 (12): 1470–6. doi: 10.1136/bjo.85.12.1470

10. Hammond CJ, Snieder H, Gilbert CE, Spector TD. Genes and environment in refractive error: the twin eye study. Invest Ophthalmol Vis Sci. 2001 May; 42 (6): 1232–6. PMID: 11328732.

11. Dirani M, Chamberlain M, Shekar SN, et al. Heritability of refractive error and ocular biometrics: the Genes in Myopia (GEM) twin study. Invest Ophthalmol Vis Sci. 2006 Nov; 47 (11): 4756–61. doi: 10.1167/iovs.06-0270

12. Teikari JM, Kaprio J, Koskenvuo MK, Vannas A. Heritability estimate for refractive errors — a population-based sample of adult twins. Genet Epidemiol. 1988; 5 (3): 171–81. doi: 10.1002/gepi.1370050304

13. Lopes MC, Andrew T, Carbonaro F, Spector TD, Hammond CJ. Estimating heritability and shared environmental effects for refractive error in twin and family studies. Invest Ophthalmol Vis Sci. 2009 Jan; 50 (1): 126–31. doi: 10.1167/iovs.08-2385

14. Dirani M, Shekar SN, Baird PN. Evidence of shared genes in refraction and axial length: the Genes in Myopia (GEM) twin study. Invest Ophthalmol Vis Sci. 2008 Oct; 49 (10): 4336–9. doi: 10.1167/iovs.07-1516

15. Jones-Jordan LA, Sinnott LT, Manny RE, et al.; Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study Group. Early childhood refractive error and parental history of myopia as predictors of myopia. Invest Ophthalmol Vis Sci. 2010 Jan; 51 (1): 115–21. doi: 10.1167/iovs.08-3210

16. Dirani M, Shekar SN, Baird PN. Adult-onset myopia: the Genes in Myopia (GEM) twin study. Invest Ophthalmol Vis Sci. 2008 Aug; 49 (8): 3324–7. doi: 10.1167/iovs.07-1498

17. Teikari J, Koskenvuo M, Kaprio J, O’Donnell J. Study of gene-environment effects on development of hyperopia: a study of 191 adult twin pairs from the Finnish Twin Cohort Study. Acta Genet Med Gemellol (Roma). 1990; 39 (1): 133–6. doi: 10.1017/s0001566000005651

18. Tsai MY, Lin LL, Lee V, Chen CJ, Shih YF. Estimation of heritability in myopic twin studies. Jpn J Ophthalmol. 2009 Nov; 53 (6): 615–22. doi: 10.1007/s10384-009-0724-1

19. Cooper J, Tkatchenko AV. A review of current concepts of the etiology and treatment of myopia. Eye Contact Lens. 2018 Jul; 44 (4): 231–47. doi: 10.1097/ICL.0000000000000499

20. Zhu X, Du Y, Li D, et al. Aberrant TGF-β1 signaling activation by MAF underlies pathological lens growth in high myopia. Nat Commun. 2021 Apr 8; 12 (1): 2102. doi: 10.1038/s41467-021-22041-2. Erratum in: Nat Commun. 2022 Dec 20; 13 (1): 7834. doi: 10.1038/s41467-022-35562-1

21. Lin HJ, Wan L, Tsai Y, et al. The TGFbeta1 gene codon 10 polymorphism contributes to the genetic predisposition to high myopia. Mol Vis. 2006 Jun 21; 12: 698–703. PMID: 16807529.

22. Tkatchenko AV, Tkatchenko TV, Guggenheim JA, et al. APLP2 regulates refractive error and myopia development in mice and humans. PLoS Genet. 2015 Aug 27; 11 (8): e1005432. doi: 10.1371/journal.pgen.1005432

23. Li Y, Liu J, Qi P. The increasing prevalence of myopia in junior high school students in the Haidian District of Beijing, China: a 10-year population-based survey. BMC Ophthalmol. 2017; 17: 88. https://doi.org/10.1186/s12886-017-0483-6

24. Wang H, Su S, Yang M, et al. Association of ZNF644, GRM6, and CTNND2 genes with high myopia in the Han Chinese population: Jiangsu Eye Study. Eye (Lond). 2016 Jul; 30 (7): 1017–22. doi: 10.1038/eye.2016.8

25. Li Y, Zhang Y, Zhang P, et al. Genetic susceptibility to high myopia in Han Chinese population. Open Life Sci. 2022 May 17; 17 (1): 512–6. doi: 10.1515/biol-2022-0055

26. Yip SP, Leung KH, Fung WY, et al. A DNA pooling-based case-control study of myopia candidate genes COL11A1, COL18A1, FBN1, and PLOD1 in a Chinese population. Mol Vis. 2011 Mar 26; 17: 810–21. PMID: 21527992.

27. Kunceviciene E, Liutkeviciene R, Budiene B, Sriubiene M, Smalinskiene A. Independent association of whole blood miR-328 expression and polymorphism at 3’UTR of the PAX6 gene with myopia. Gene. 2019 Mar 1; 687: 151–5. doi: 10.1016/j.gene.2018.11.030

28. Blánquez-Martínez D, Díaz-Villamarín X, García-Rodríguez S, et al. Genetic polymorphisms in VEGFR coding genes (FLT1/KDR) on Ranibizumab response in high myopia and choroidal neovascularization patients. Pharmaceutics. 2022 Jul 26; 14 (8): 1555. doi: 10.3390/pharmaceutics14081555

29. Cheong KX, Yong RYY, Tan MMH, Tey FLK, Ang BCH. Association of VIPR2 and ZMAT4 with high myopia. Ophthalmic Genet. 2020 Feb; 41 (1): 41–8. doi: 10.1080/13816810.2020.1737951

30. Dai L, Li Y, Du CY, et al. Ten SNPs of PAX6, Lumican, and MYOC genes are not associated with high myopia in Han Chinese. Ophthalmic Genet. 2012 Sep; 33 (3): 171–8. doi: 10.3109/13816810.2012.675397

31. Chen CD, Yu ZQ, Chen XL, et al. Evaluating the association between pathological myopia and SNPs in RASGRF1, ACTC1 and GJD2 genes at chromosome 15q14 and 15q25 in a Chinese population. Ophthalmic Genet. 2015 Mar; 36 (1): 1–7. doi: 10.3109/13816810.2013.812737

32. Oishi M, Yamashiro K, Miyake M, et al.; Nagahama Study Group; Yamada R, Matsuda F, Yoshimura N. Association between ZIC2, RASGRF1, and SHISA6 genes and high myopia in Japanese subjects. Invest Ophthalmol Vis Sci. 2013 Nov 13; 54 (12): 7492–7. doi: 10.1167/iovs.13-12825

33. Yang X, Liu X, Peng J, et al. Evaluation of MYOC, ACAN, HGF, and MET as candidate genes for high myopia in a Han Chinese population. Genet Test Mol Biomarkers. 2014 Jun; 18 (6): 446–52. doi: 10.1089/gtmb.2013.0479

34. Rasool S, Dar R, Khan MS, et al. MYP2 locus genes: Sequence variations, genetic association studies and haplotypic association in patients with High Myopia. Int J Biochem Mol Biol. 2021 Feb 15; 12 (1): 35–48. PMID: 33824778.

35. Wu H, Jiang L, Zheng R, et al. Genetic association study between the COL11A1 and COL18A1 genes and high myopia in a Han Chinese population. Genet Test Mol Biomarkers. 2018 Jun; 22 (6): 359–65. doi: 10.1089/gtmb.2017.0235

36. Tang SM, Li FF, Lu SY, et al. Association of the ZC3H11B, ZFHX1B and SNTB1 genes with myopia of different severities. Br J Ophthalmol. 2020 Oct; 104 (10): 1472–6. doi: 10.1136/bjophthalmol-2019-314203

37. Li L, Cui YJ, Zou Y, et al. Genetic association study of SOX2 gene polymorphisms with high myopia in a Chinese population. Eur J Ophthalmol. 2021 Mar; 31 (2): 734–9. doi: 10.1177/1120672120904666

38. Ma B, Zhang W, Wang X, et al. Polymorphisms in TRIB2 and CAPRIN2 genes contribute to the susceptibility to high myopia-induced cataract in Han Chinese population. Med Sci Monit. 2023 Jan 30; 29: e937702. doi: 10.12659/MSM.937702

39. Wang P, Liu X, Ye Z, et al. Association of IGF1 and IGF1R gene polymorphisms with high myopia in a Han Chinese population. Ophthalmic Genet. 2017 Mar-Apr; 38 (2): 122–6. doi: 10.3109/13816810.2016.1145699

40. Jiang L, Huang G, Dai C, et al. Association of genetic variants in PDGFRA with high myopia in the Han population of southwestern China. Ophthalmic Genet. 2022 Apr; 43 (2): 18–-90. doi: 10.1080/13816810.2021.1998550

41. Yuan XL, Zhang R, Zheng Y, et al. Corneal curvature-associated MTOR variant differentiates mild myopia from high myopia in Han Chinese population. Ophthalmic Genet. 2021 Aug; 42 (4): 446–57. doi: 10.1080/13816810.2021.1923035

42. Wang H, Su S, Yang M, et al. Association of ZNF644, GRM6, and CTNND2 genes with high myopia in the Han Chinese population: Jiangsu Eye Study. Eye (Lond). 2016 Jul; 30 (7): 1017–22. doi: 10.1038/eye.2016.8

43. Sun W, Li Y, Li J, et al. Cytokine fibroblast growth factor 10 (FGF10) polymorphisms are associated with risk of myopia in young children. J Cell Biochem. 2019 Sep; 120 (9): 15241–7. doi: 10.1002/jcb.28790790

44. Zhang Q, Guo X, Xiao X, et al. A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612. Mol Vis. 2005 Jul 22; 11: 554–60. PMID: 16052171.

45. Farbrother JE, Kirov G, Owen MJ, et al. Linkage analysis of the genetic loci for high myopia on 18p, 12q, and 17q in 51 U.K. families. Invest Ophthalmol Vis Sci. 2004 Sep; 45 (9): 2879–85. doi: 10.1167/iovs.03-1156

46. Meng B, Wang K, Huang Y, Wang Y. The G allele of the IGF1 rs2162679 SNP is a potential protective factor for any myopia: Updated systematic review and meta-analysis. PLoS One. 2022 Jul 21; 17 (7): e0271809. doi: 10.1371/journal.pone.0271809

47. Hawthorne F, Feng S, Metlapally R, et al. Association mapping of the high-grade myopia MYP3 locus reveals novel candidates UHRF1BP1L, PTPRR, and PPFIA2. Invest Ophthalmol Vis Sci. 2013 Mar 21; 54 (3): 2076–86. doi: 10.1167/iovs.12-11102

48. Guo L, Du X, Lu C, Zhang WH. Association between Insulin-Like Growth Factor 1 gene rs12423791 or rs6214 polymorphisms and high myopia: A meta-analysis. PLoS One. 2015 Jun 15; 10 (6): e0129707. doi: 10.1371/journal.pone.0129707

49. Li YJ, Goh L, Khor CC, et al. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese. Ophthalmology. 2011 Feb; 118 (2): 368–75. doi: 10.1016/j.ophtha.2010.06.016

50. Iomdina E.N., Tarutta E.P. Modern directions of fundamental research into the pathogenesis of progressive myopia. Bulletin of the Russian Academy of Medical Sciences. 69; 3–4: 44–9 (In Russ.).


Review

For citations:


Aprelev A.E., Cherkasov S.V., Chuprov A.D., Aprelev V.E., Antokhin E.Y., Aprelev A.A. Genetic factors of myopia. Russian Ophthalmological Journal. 2025;18(1):125-130. (In Russ.) https://doi.org/10.21516/2072-0076-2025-18-1-125-130

Views: 146


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)