Preview

Russian Ophthalmological Journal

Advanced search

Artificial vision: advances, topical issues, and prospects

https://doi.org/10.21516/2072-0076-2018-11-3-3-27

Abstract

The review presents modern technologies of vision restoration, with special emphasis to retinal prosthetics: Argus, Alpha IMS, Intelligent Medical Implant, Artificial Silicon Retina, Photovoltaic Retinal Prosthesis, Epi-Ret, Boston Retina Implant Project, Bionic Vision Australia, and Semichronic Suprachoroidal Transretinal Prosthesis. Types of visual implants are described, reviewing technical parameters, surgery procedures, clinical trials and application experience. Basic issues and prospects of new artificial vision technologies are discussed.

About the Authors

V. V. Neroev
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation
Corresponding member of the Russian Academy of Sciences, Dr. Med. Sci., Professor, director
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia


Yu. S. Astakhov
St. Petersburg I.P. Pavlov First State Medical University
Russian Federation
Dr. Med. Sci., Professor, clinical ophthalmology department
6–8, Lva Tolstogo St., St. Petersburg, 197022, Russia


M. M. Lobanova
St. Petersburg “Diagnostic center No. 7” (ophthalmological) for adults and children; Information Technology, Mechanics and Optics University
Russian Federation
MD, ophthalmologist, junior scientist, bionics laboratory
38, Mokhovaya St., St. Petersburg, 191028, Russia
49, Kronverkskiy Pr., St. Petersburg, 197101, Russia


D. D. Stupin
St. Petersburg Academic University, RAS; Information Technology, Mechanics and Optics University
Russian Federation
PhD student, condensed matter physics department; junior researcher, laboratory of nanobiotechnologies, junior researcher, bionics laboratory
8/3, Khlopina St., St. Petersburg, 194021, Russia
49, Kronverkskiy Pr., St. Petersburg, 197101, Russia


N. A. Verlov
Petersburg Nuclear Physics Institute “Kurchatov Institute”; Information Technology, Mechanics and Optics University
Russian Federation
PhD in biological sciences, senior scientist, department of molecular and radiation biophysics, leading scientist, bionics laboratory
1, Orlova Roshcha, Gatchina, Leningradskaya Oblast, St. Petersburg, 188300, Russia
49, Kronverkskiy Pr., St. Petersburg, 197101, Russia


M. N. Ryazantsev
St. Petersburg State University; Information Technology, Mechanics and Optics University
Russian Federation
MD, Cand. of Chemical Sci., Associate Professor, senior scientist, bionics laboratory
7/9, Universitetskaya Emb., 199034, St. Petersburg, Russia
49, Kronverkskiy Pr., St. Petersburg, 197101, Russia


O. V. Zaitseva
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation
MD, Cand. Med. Sci., leading researcher, department of retinal and optic nerve pathology
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia


A. A. Bogdanov
Information Technology, Mechanics and Optics University
Russian Federation
Cand. of Physical and Mathematical Sci., head, bionics laboratory
49, Kronverkskiy Pr., St. Petersburg, 197101, Russia


V. N. Vasilyev
Information Technology, Mechanics and Optics University
Russian Federation
Corresponding member of the Russian Academy of Sciences, PhD in Engineering Sci., Professor, president, ITMO university
49, Kronverkskiy Pr., St. Petersburg, 197101, Russia


M. V. Dubina

Russian Federation
MD, Dr. Med. Sci., full member of the Russian Academy of Sciences


References

1. Нарушения зрения и слепота. ВОЗ. Информационный бюллетень No 282, август 2014 г. Avaible at http://www.who.int/mediacentre/factsheets/fs282/ru/ Visual impairment and blindness. WHO. Report No 282, аugust. 2014. Avaible at http://www.who.int/mediacentre/factsheets/fs282/ru/ (in Russian).

2. http://www.eyetuebingen.de/fileadmin/user_upload/documents/ zrennerlab/visual_prostheses-groups-v20161212.pdf.

3. Максимова Е.М. Клиническая физиология зрения: Очерки. Шамшинова А.М., ред. Андреева Т.М. Москва: 2006. Maksimova E.M. Clinical physiology of vision. Essay. Shamshinova A.M., ed. Moscow: T.M. Andreeva. 2006 (in Russian).

4. Marc R., Robert E.M., Watt C.B., et al. Neural remodeling in retinal degeneration. Prog. Retin. Eye Res. 2003 Sep; 22 (5): 607–55. https:// doi.org/10.1016/S1350-9462(03)00039-9

5. Machemer R. The development of pars plana vitrectomy: a personal account. Graefes Arch. Clin. Exp. Ophthalmol. 1995; 233 (8): 453–68. https:// doi.org/10.1007/BF00183425

6. Алферов Ж.И. Двойные гетероструктуры: концепция и применение в физике, электронике и технологии. Успехи физических наук. 2002; 172 (9): 1068–86. doi: https://doi.org/10.3367/UFNr.0172.200209e.1068 Alferov Zh.I. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Uspekhi fizicheskikh nauk. 2002; 172 (9): 1068–86. doi: https://doi.org/10.3367/ UFNr.0172.200209e.1068

7. Riordan M., Hoddeson L., Herring C. The invention of the transistor. Reviews of Modern Physics. 1999; 71(2): S336. https://doi.org/10.1103/ RevModPhys.71.S336

8. Le Roy. Ou l’on rend compte de quelques tentatives que l’on a faites pour guerir plusieurs maladies par l’ectricite. Memoires de Mathematique et de Physique tires des registres de cette Academie. Histoire de l’Academie royale des Sciences. Paris. 1755: 2–12.

9. Foerster O. Beitriige zur Pathophysiologie der Sehbahn und der Sehsphare. J. Psychol. Neurol. Lpz. 1929; 39: 463–85.

10. Piotrowska N., Winkler P.A. Otfrid Foerster, the great neurologist and neurosurgeon from Breslau (Wroclaw): his influence on early neurosurgeons and legacy to present-day neurosurgery. J. Neurosurg. 2007; 107: 451–6.

11. Lewis P.M., Rosenfeld J.V. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective. Brain Research. 2016; 1630: 208–24.

12. Penfield W. Some observations on the cerebral cortex of man. Proc. R. Soc. Lond. BBiol. Sci. 1947; 134: 329–47. https://doi.org/10.1016/ j.brainres.2015.08.038

13. Krause F., Schum H. Neue deutsche Chirurgie. Kuttner H., ed. Stuttgart: Enke. 1931; 49: 482–6.

14. Button J., Putnam T. Visual responses to cortical stimulation in the blind. J. Iowa St. Med. Soc. 1962; 52: 17–21.

15. Бехтерева Н.П. Лечебная электростимуляция мозга и нервов человека. Москва: АСТ. 2008. Bekhtereva N.P. Therapeutic electrostimulation of the brain and nerves. Moscow: AST. 2008 (in Russian).

16. Шандурина А.Н., Хилько В.А., Бехтерева Н.П. Клинико-физиологические основы нового способа восстановления зрения путем прямой электростимуляции поврежденных зрительных нервов человека. Физиология человека. 1984; 10 (5): 719–46. Shandurina A. N., Hilko V.A., Behtereva N.P. Clinical and physiological basics of the new approach to restoration vision by direct electrostimulation of the damaged optic nerves. Human physiology. 1984; 10 (5): 719–46 (in Russian).

17. Федоров С.Н., Линник Л.Ф., Антропов Г.М. Способ лечения заболеваний зрительного тракта прямой электростимуляцией. Патент РФ на изобретение No 2025114 от 30.12.1994. Fedorov S.N., Linnik L.F., Antropov G.M., et al. Treatment of diseases of the visual tract by direct electrostimulation. Patent RF for invention No 2025114, 30.12.1994 (in Russian).

18. Brindley G.S., Lewin W.S. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. (Lond). 1968; 196: 479–93. https:// doi.org/10.1113/jphysiol.1968.sp008519

19. Dobelle W.H. Artificial Vision for the blind by connecting a television camera to the visual cortex. ASAIO Journal. 2000; 46: 3–9.

20. Humayun M.S., Weiland J.D., Fujii G.Y., et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision research. 2003; 43 (24): 2573–81. https://doi.org/10.1016/S0042-6989(03)00457-7

21. Da Cruz L., Dorn J.D., Humayun M.S., et al. Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology. 2016; 123 (10): 2248–54. https://doi.org/10.1016/ j.phtha.2016.06.049

22. http://investors.secondsight.com/static-files/86adc825-32b1-424a-884cf79df179f847

23. https://www.rosminzdrav.ru/news/2017/07/21/5810-ministr-veronikaskvortsova-vstretilas-s-pervym-patsientom-perenesshim-operatsiyu-poustanovke-retinalnyh-implantov-bionicheskogo-glaza.

24. https://www.photoniques.com/articles/photon/pdf/2018/02/ photon2018S3p48.pdf

25. Hubel D.H. Eye, brain, and vision. Scientific American Library/Scientific American Books. 1995.

26. Kanski J.J. Diseases of the ocular fundus. Mosby Inc. 2004.

27. Шамшинова А.М. Наследственные и врожденные заболевания сетчатки и зрительного нерва. Москва: Медицина; 2003. Shamshinova A.M. Hereditary and congenital diseases of the retina and optic nerve. Moscow: Meditsina; 2003 (in Russian).

28. Ayton L.N., Blamey P.J., Guymer R.H., et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PloS one. 2014; 9 (12). https:// doi.org/10.1371/journal.pone.0115239

29. Palanker D., Vankov A., Huie P., et al. Design of a high-resolution optoelectronic retinal prosthesis. J. Neural. Eng. 2005; 2: 105–20.

30. Humayun M.S., de Juan E.Jr., Dagnelie G. The Bionic Eye: A Quarter Century of Retinal Prosthesis Research and Development. Ophthalmology. 2016; 123 (10): 89–97. https://doi.org/10.1016/j.ophtha.2016.06.044

31. Weiland J.D., Cho A.K., Humayun M.S. Retinal prostheses: current clinical results and future needs. Ophthalmology. 2011; 118 (11): 2227–37. https:// doi.org/10.1016/j.ophtha.2011.08.042

32. Yue L., Weiland J.D., Roska B., et al. Retinal stimulation strategies to restore vision: Fundamentals and systems. Progress in Retinal and Eye Research. 2016; 53: 21–47.

33. Luo Y.H., da Cruz L. The Argus® II Retinal Prosthesis System. Progress in Retinal and Eye Research. 2016; 50: 89–107. doi:10.1016/ j.preteyeres.2015.09.003

34. Zrenner E., Bartz-Schmidt K.U., Benav H., et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. Biol. Sci. 2011; 278 (1711): 1489–97. doi: 10.1098/rspb.2010.1747

35. Gabel V.P., ed. Artificial Vision: A Clinical Guide. Springer; 2016.

36. Hornig R., Zehnder T. The IMI Retinal Implant System. In: Humayun MS., Weiland JD., Chader G., Greenbaum EX., eds. Artificial Sight: Basic Research, Biomedical Engineering, and Clinical Advances. Springer; 2007.

37. Kelly S.K., Shire D.B. A Hermetic Wireless Subretinal Neurostimulator for Vision Prostheses. IEEE transactions on biomedical engineering. 2011; 58 (11): 3197–205. doi: 10.1109/TBME.2011.2165713

38. Keseru.. M., Feucht M., Bornfeld N., et al. Acute electrical stimulation of the human retina with an epiretinal electrode array. Acta ophthalmologica. 2012; 90 (1): 1–8. https://doi.org/10.1111/j.1755-3768.2011.02288.x

39. Fornos A.P., Sommerhalder J., da Cruz L., et al. Temporal properties of visual perception on electrical stimulation of the retina. Invest. Ophthalmol. Vis. Sci. 2012; 53 (6): 2720–31. doi:10.1167/iovs.11-9344

40. Хайкин С. Нейронные сети: полный курс, 2-е издание. Издательский дом Вильямс: 2008. Haykin S.S. Neural networks: a comprehensive foundation. Tsinghua University Press: 2001.

41. Posch C., Matolin D., Wohlgenannt R., et al. Live demonstration: Asynchronous time-based image sensor (ATIS) camera with full-custom ae processor. Circuits and Systems (ISCAS). Proc. of 2010 IEEE International Symposium. 2010; 1392–2. doi: 10.1109/ISCAS.2010.5537265

42. Klauke S., Goertz M., Rein S., et al. Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest. Ophthalmol. Vis. Sci. 2011; 52: 449–55. doi:10.1167/iovs.09-4410

43. Mokwa W., Goertz M., Koch C., et al. Intraocular epiretinal prosthesis to restore vision in blind humans. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008; 2008: 5790–3. doi: 10.1109/IEMBS.2008.4650530

44. Roessler G. Laube T., Brockmann C., et al. Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest. Ophth. Vis. Sci. 2009; 50 (6): 3003–3008. doi:10.1167/iovs.08-2752

45. Chow A.Y., Chow V.Y., Packo K.H., et al. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch. Ophthalmol. 2004; 122: 460–9. doi:10.1001/archopht.122.4.460

46. Green M. A., Emery K. Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications. 2015; 23 (1): 1–9. https:// doi.org/10.1002/pip.2978

47. Mathieson K., Loudin J., Goetz G., et al. Photovoltaic Retinal Prosthesis with High Pixel Density. Nat. Photonics. 2012; 6: 391–7.

48. Suaning G.J., Lovell N.H., Lehmann T. Neuromodulation of the retina from the suprachoroidal space: The Phoenix 99 implant. Biomedical Circuits and Systems Conference (BioCAS). IEEE. 2014; 256–9. doi: 10.1109/ BioCAS.2014.6981711

49. Cheng D.L., Greenberg P.B., Borton D.A. Advances in retinal prosthetic research: a systematic review of engineering and clinical characteristics of current prosthetic initiatives Current eye research. 2017; 42 (3): 334–47. https://doi.org/10.1080/02713683.2016.1270326

50. Fujikado T., Morimoto T., Sakaguchi H., et al. Clinical Trial of Chronic Implantation of Suprachoroidal-Transretinal Stimulation System for Retinal Prosthesis. Sensors and Materials. 2012; 24 (4): 181–7.

51. Fujikado T., Kamei M., Sakaguch H., et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2011; 52 (7): 4726–33. doi:10.1167/iovs.10-6836

52. Kelly S.K., Shire D.B., Chen J., et al. A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Transactions on Biomedical Engineering. 2011; 58 (11): 3197–205. doi: 10.1109/TBME.2011.2165713

53. Yue L., Falabella P., Christopher P., et al. Ten-year follow-up of a blind patient chronically implanted with epiretinal prosthesis Argus I. Ophthalmology. 2015; 122 (12): 2545–52. https://doi.org/10.1016/j.ophtha.2015.08.008

54. Raz-Prag D., Gefen R., Weinberger D. A newly developed surgical technique for epiretinal implantation of retinal prosthesis. Invest. Ophthalmol. Vis. Sci. 2012 March; 53 (14): 5522.

55. Veraart C., Raftopoulos C., Mortimer J.T., et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 1998; 813 (1): 181–6. https://doi.org/10.1016/S00068993(98)00977-9

56. Panetsos F., Sanchez-Jimenez A., Cerio E.D., et al. Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front Neurosci. 2011; 5: 1–12. https://doi.org/10.3389/fnins.2011.00084

57. Pezaris J.S., Eskandar E.N. Getting signals into the brain: visual prosthetics through thalamic microstimulation. Neurosurg. Focus. 2009; 27: 1–16.

58. Maguire A.M., Simonelli F., Pierce E.A., et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. 2008; 358 (21): 2240–8.

59. Bainbridge J.W.B., Smith A.J., Barker S.S., et al. Effect of Gene Therapy on Visual Function in Leber’s Congenital Amaurosis. 2008; 358 (21): 2231–9.

60. Hauswirth W.W., Aleman T.S., Kaushal S., et al. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. 2008; 19 (10): 979–90. https://doi.org/10.1089/hum.2008.107

61. Simonelli F., Maguire A.M., Testa F., et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. 2010; 18 (3): 643–50. https://doi.org/10.1038/mt.2009.277

62. Marc R., Pfeiffer R., Jones B. Retinal prosthetics, optogenetics, and chemical photos witches. ACS Chem. Neurosci. 2014; 5 (10): 895–901. doi: 10.1021/cn5001233

63. Mourot A., Kienzler M. A., Banghart M. R., et al. Tuning photochromic ion channel blockers. ACS Chem. Neurosci. 2011; 2: 536—43. doi: 10.1021/cn200037p

64. Polosukhina A., Litt J., Tochitsky I., et al. Photochemical restoration of visual responses in blind mice. Neuron. 2012; 75: 271—82. https://doi.org/10.1016/j.neuron.2012.05.022

65. Tochitsky I., Polosukhina A., Degtyar V.E., et al. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron. 2014; 81: 800—13. https://doi.org/10.1016/j.neuron.2014.01.003

66. Jones B.W., Marc R.E. Retinal remodeling during retinal degeneration. Exp. Eye Res. 2005; 81: 123–37. https://doi.org/10.1016/j.exer.2005.03.006.

67. Barrett J.M., Berlinguer-Palmini R., Degenaar P. Optogenetic approaches to retinal prosthesis. Visual neuroscience. 2014; 31 (4–5): 345-54. https://doi.org/10.1017/S0952523814000212

68. Sachs H.G. Transchoroidal subretinal chip implantation in blind retinal pigmentosa patients. The choroidal challenge. Russian Ophthalmological Journal. 2016; 2: 27–32. doi: 10.21516/2072-0076-2016-9-2-27-32

69. Ameri H., Ratanapakorn T., Ufer S., et al. Toward a wide-field retinal prosthesis. J. Neural. Eng. 2009; 6 (3): 122–8.

70. Сомов Е.Е. Клиническая анатомия органа зрения человека. 4-е изд. Москва: МЕДпресс информ; 2016. Somov E.E. Clinical ophthalmology. Moscow: MEDpress-inform; 2016 (in Russian).

71. Ковалевский Е.И. Офтальмология: учебник. Медицина; 1995. Kovalevskiy E.I. Ophthalmology: textbook. Moscow: Meditsina; 1995 (in Russian).

72. Franks W., Schenker I., Schmutz P., et al. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Transactions on Biomedical Engineering: 2005. 52 (7): 129–1302. doi: 10.1109/ TBME.2005.847523

73. Argus® II. Retinal Prosthesis System. Patient Manual Copyright© Second Sight Medical Products, Inc. 2012: 1–107.

74. Weiland J.D., Humayun M.S. Retinal Prosthesis. IEEE Trans. Biomed. Eng. 2014; 61(5): 1412–24.

75. Gosalia K., Lazzi G., Humayun M. Investigation of a microwave data telemetry link for a retinal prosthesis. IEEE Transactions on Microwave Theory and Techniques. 2004; 52 (8): 1925–33. doi: 10.1109/TMTT.2004.832007

76. Carpenter R.L. Ocular effects of microwave radiation. Bulletin of the New York Academy of Medicine. 1979; 55 (11): 1048–57.

77. Blahut R.E. Theory and practice of error control codes. Reading (Ma) etc. Addison-Wesley: 1983.

78. Stingl K., Schippert R., Bartz-Schmidt K.U., et al. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Frontiers in neuroscience. 2017; 11: 445. https://doi.org/10.3389/fnins.2017.00445

79. Zrenner E. Fighting blindness with microelectronics. Science translational medicine. 2013; 5 (210): 210. doi: 10.1126/scitranslmed.3007399

80. Chow A.Y. Retinal prostheses development in retinitis pigmentosa patients. Progress and comparison. The Asia-Pacific Journal of Ophthalmology. 2013; 2 (4): 253–68. doi: 10.1097/APO.0b013e3182a0b4fe

81. Kelly S.K., Shire D.B., Chen J., et al. Developments on the Boston 256-channel retinal implant. Multimedia and Expo Workshops (ICMEW), 2013 IEEE International Conference on. IEEE: 2013; 1–6. doi: 10.1109/ ICMEW.2013.6618445

82. Silverman A. Healing the Blind: Perspectives of Blind Persons on Methods to Restore Sight. Nanotechnology, the Brain, and the Future. Springer, Dordrecht. 2013; 159–166. https://doi.org/10.1007/978-94-007-1787-9_9


Review

For citations:


Neroev V.V., Astakhov Yu.S., Lobanova M.M., Stupin D.D., Verlov N.A., Ryazantsev M.N., Zaitseva O.V., Bogdanov A.A., Vasilyev V.N., Dubina M.V. Artificial vision: advances, topical issues, and prospects. Russian Ophthalmological Journal. 2018;11(3):3-27. (In Russ.) https://doi.org/10.21516/2072-0076-2018-11-3-3-27

Views: 2881


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)