Overview of fundus imaging technologies
https://doi.org/10.21516/2072-0076-2025-18-3-supplement-12-15
Abstract
Fundus imaging plays a crucial role in the diagnostics and monitoring of the diseases of the retina, optic nerve, and choroid. Over the past decades, fundus imaging technologies have evolved from simple ophthalmoscopes to high-precision tomographs and multispectral systems. This review discusses the main technologies of fundus imaging, their principles, advantages, and limitations. Modern developments are focused on increasing portability, automation, and accessibility for widespread use.
About the Authors
K. D. AksenovRussian Federation
Kirill D. Aksenov — CEO; researcher
Admiral Serebryakov Emb., 49, Novorossiysk, Krasnodar Region, 353905
20, Karl Marx St., Novorossiysk, Krasnodar Region, 353900
L. E. Aksenova
Russian Federation
Lyubov E. Aksenova — researcher
Admiral Serebryakov Emb., 49, Novorossiysk, Krasnodar Region, 353905
20, Karl Marx St., Novorossiysk, Krasnodar Region, 353900
M. A. Nefedov
Russian Federation
Mikhail A. Nefedov — software technician; laboratory assistant
Admiral Serebryakov Emb., 49, Novorossiysk, Krasnodar Region, 353905
20, Karl Marx St., Novorossiysk, Krasnodar Region, 353900
A. V. Prisyazhnyuk
Russian Federation
Anton V. Prisyazhnyuk — research assistant; software engineer
Admiral Serebryakov Emb., 49, Novorossiysk, Krasnodar Region, 353905
20, Karl Marx St., Novorossiysk, Krasnodar Region, 353900
V. V. Myasnikova
Russian Federation
Viktoria V. Myasnikova — Dr. of Med. Sci., researcher; head of chair of physiology and general pathology, professor of chair of hospital surgery
Admiral Serebryakov Emb., 49, Novorossiysk, Krasnodar Region, 353905
20, Karl Marx St., Novorossiysk, Krasnodar Region, 353900
Pervomayskaya St., 191, Maykop city, Republic of Adygea, 385000
V. A. Chudnevtsov
Russian Federation
Vladislav A. Chudnevtsov — J Lab Research Assistant; Laboratory Assistant
Admiral Serebryakov Emb., 49, Novorossiysk, Krasnodar Region, 353905
20, Karl Marx St., Novorossiysk, Krasnodar Region, 353900
V. V. Denisova
Russian Federation
Vladislava V. Denisova — programmer; laboratory assistant
Admiral Serebryakov Emb., 49, Novorossiysk, Krasnodar Region, 353905
20, Karl Marx St., Novorossiysk, Krasnodar Region, 353900
V. G. Shemanin
Russian Federation
Valeriy G. Shemanin — Dr. of Phys.-Mat. Sci., researcher
20, Karl Marx St., Novorossiysk, Krasnodar Region, 353900
References
1. GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight. The Lancet Global Health. 2021; 9 (2): e144–e160. doi: 10.1016/S2214-109X(20)30489-7
2. Cen LP, Ji J, Lin JW, et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nat Commun. 2021; 12, 4828. https://doi.org/10.1038/s41467-021-25138-w
3. Cordero I. Understanding and caring for an indirect ophthalmoscope. Community Eye Health. 2016; 29 (95): 57. PMID: 28289323.
4. Shanmugam MP, Mishra DK, Rajesh R, Madhukumar R. Unconventional techniques of fundus imaging: A review. Indian J Ophthalmol. 2015 Jul; 63 (7): 582–5. doi: 10.4103/0301-4738.167123
5. Panwar N, Huang P, Lee J, et al. Fundus photography in the 21st century — A Review of recent technological advances and their implications for worldwide healthcare. Telemed J E Health. 2016 Mar; 22 (3): 198–208. doi: 10.1089/tmj.2015.0068
6. Nunez do Rio JM, Sen P, Rasheed R, et al. Deep learning-based segmentation and quantification of retinal capillary non-perfusion on ultra-wide-field retinal fluorescein angiography. J Clin Med. 2020 Aug 6; 9 (8): 2537. doi: 10.3390/jcm9082537
7. Mainster MA, Desmettre T, Querques G, Turner PL, Ledesma-Gil G. Scanning laser ophthalmoscopy retroillumination: applications and illusions. Int J Retina Vitreous. 2022 Sep 30; 8 (1): 71. https://doi.org/10.1186/s40942-022-00421-0
8. Patel CK, Buckle M. Ultra-widefield imaging for pediatric retinal disease. Asia Pac J Ophthalmol (Phila). 2018 May-Jun; 7 (3): 208–14. doi: 10.22608/APO.2018100
9. Antropoli A, Arrigo A, La Franca L, et al. Peripheral and central capillary non-perfusion in diabetic retinopathy: An updated overview. Front Med. 2023; 10: 1125062. doi: 10.3389/fmed.2023.1125062
10. Ashrafkhorasani M, Habibi A, Nittala MG, et al. Peripheral retinal lesions in diabetic retinopathy on ultra-widefield imaging. Saudi J Ophthalmol. 2024 Jan 6; 38 (2): 123–31. doi: 10.4103/sjopt.sjopt_151_23
11. Brown K, Keane D, Turner L, Peto T. Impact of ultra-widefield imaging on understanding the pathophysiology of peripheral retinal degeneration. Medical Research Archives. 2024 aug.; 12 (8). https://doi.org/10.18103/mra.v12i8.5507
12. Huang D, Swanson EA, Lin CP, et al. Optical Coherence Tomography. Science. 1991; 254:1178-81. doi: 10.1126/science.1957169
13. Lu CD, Kraus MF, Potsaid BJ, et al. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express. 2013 Dec 20; 5 (1): 293–311. doi: 10.1364/BOE.5.000293
14. Jung W, Kim J, Jeon M, et al. Handheld optical coherence tomography scanner for primary care diagnostics. IEEE Trans Biomed Eng. 2011 Mar; 58 (3): 741–4. doi: 10.1109/TBME.2010.2096816
15. Roorda A. Applications of adaptive optics scanning laser ophthalmoscopy. Optometry and Vision Science. 2010 April; 87 (4): 260–8. doi: 10.1097/OPX.0b013e3181d39479
16. DuBose T, Nankivil D, LaRocca F, et al. Handheld adaptive optics scanning laser ophthalmoscope. Optica. 2018 Sep 20; 5 (9): 1027–36. doi: 10.1364/OPTICA.5.001027
17. Maman R, Mualem E, Mazurski N, Engelberg J, Levy U. Achromatic imaging systems with flat lenses enabled by deep learning. ACS Photonics. 2023; 10 (12): 4494–500. https://pubs.acs.org/doi/10.1021/acsphotonics.3c01349
18. Wroblewski JJ, Sanchez-Buenfil E, Inciarte M, et al. Diabetic retinopathy screening using smartphone-based fundus photography and deep-learning artificial intelligence in the Yucatan peninsula: A field study. J Diabetes Sci Technol. 2025 Mar; 19 (2): 370–6. doi:10.1177/19322968231194644
19. Penha FM, Priotto BM, Hennig F, et al. Single retinal image for diabetic retinopathy screening: performance of a handheld device with embedded artificial intelligence. Int J Retin Vitreos. 2023 Jul 10; 9 (1): 41. doi: 10.1186/s40942-023-00477-6
Review
For citations:
Aksenov K.D., Aksenova L.E., Nefedov M.A., Prisyazhnyuk A.V., Myasnikova V.V., Chudnevtsov V.A., Denisova V.V., Shemanin V.G. Overview of fundus imaging technologies. Russian Ophthalmological Journal. 2025;18(3):12-15. (In Russ.) https://doi.org/10.21516/2072-0076-2025-18-3-supplement-12-15


























