Preview

Russian Ophthalmological Journal

Advanced search

Angiogenic properties of catecholamines from the viewpoint of the pathogenesis of retinopathy of prematurity

https://doi.org/10.21516/2072-0076-2018-11-4-49-54

Abstract

Purpose: to assess the level of catecholamines norepinephrine and dopamine in rat retina with experimental retinopathy of prematurity (EROP) at a time corresponding to the peak of neovascularization.

Material and methods. The study was performed on 41 infant Wistar rats (82 eyes). The rats were divided into 2 groups: the experimental group (with EROP, n = 21) and the control group (n = 20). In order to reproduce the EROP, the newborn rats were placed for 14 days in the incubator together with their mother. Every 12 hours, the oxygen concentration in the incubator ranged from 60 to 15 %. The control group consisted of pups who were held in conditions with a normal oxygen content (21 %) from the moment of birth. The pups were withdrawn from the experiment on the 10th, 14th, 23rd and 28th day, whereupon they were subjected to binocular enucleation followed by histological examination, in addition, the content of noradrenaline and one of the metabolites of dopamine (L-DOPA) was determined in retinal samples of the eyeballs obtained on the 23rd day by highly effective liquid chromatography technique with electrochemical detection.

Results. Histological examination showed that in our EROP model the neovascularization peak occurs on the 23rd day of the experiment. At this time rat pups with EROP showed a significantly lower retinal L-DOPA level as compared to the control values (13.99 ng/g and 30.5 ng/g, respectively), and the norepinephrine level significantly exceeded such values (63.7 ng/g and 7.69 ng/g, respectively).

Conclusion. A relative deficiency of dopamine and a relative excess of norepinephrine of the rat pups with EROP is noted at the time of the highest vascular activity of the retina. The obtained data confirm anti-angiogenic properties of dopamine and pro-angiogenic properties of noradrenaline in the second phase of EROP development.

About the Authors

L. A. Katargina
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., Professor, deputy director

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia

 



I. P. Khoroshilova-Maslova
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., Professor, head of the department of pathological anatomy and histology

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



N. S. Bondarenko
Koltsov Institute of Developmental Biology
Russian Federation

researcher, laboratory of neural and neuroendocrine regulations

26, Vavilova St., Moscow, 119334, Russia



J. O. Nikishina
Koltsov Institute of Developmental Biology
Russian Federation

researcher, laboratory of neural and neuroendocrine regulations

26, Vavilova St., Moscow, 119334, Russia



A. R. Murtazina
Koltsov Institute of Developmental Biology
Russian Federation

PhD student, laboratory of neural and neuroendocrine regulations

26, Vavilova St., Moscow, 119334, Russia



A. M. Maybogin
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

pathologist, department of pathological anatomy and histology

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



N. A. Osipova
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

ophthalmologist, department of children’s ocular pathology

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



A. Yu. Panova
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

PhD student, department of children’s ocular pathology

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



T. V. Sudovskaya
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., ophthalmologist, pediatric outpatient department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia

 



M. V. Ugryumov
Koltsov Institute of Developmental Biology
Russian Federation

Academician of RAS, Dr. Biol. Sci., Professor, head of the laboratory of neural and neuroendocrine regulations

26, Vavilova St., Moscow, 119334, Russia



References

1. Катаргина Л.А., Слепова О.С., Демченко Е.Н., Осипова Н.А. Роль системного дисбаланса цитокинов в патогенезе ретинопатии недоношенных. Российская педиатрическая офтальмология. 2015; 4: 16–20. Katargina L.A., Slepova O.S., Demchenko E.N., Osipova N.A. The role of the systemic disbalance of serum cytokine levels in pathogenesis of retinopathy of prematurity. Rossijskaja pediatricheskaja oftal'mologija. 2015; 4: 16–20 (in Russian).

2. Sarkar C., Chakroborty D., Basu S. Neurotransmitters as regulators of tumor angiogenesis and immunity: the role of catecholamines. J. Neuroimmune Pharmacol. 2013; 8 (1): 7–14. doi: 10.1007/s11481-012-9395-7

3. Zhang N., Favazza T.L., Baglieri A.M., et al. The rat with oxygeninduced retinopathy is myopic with low retinal dopamine. Invest. Ophthalmol. Vis. Sci. 2013; 54 (13): 8275–84. doi: 10.1167/iovs.13-12544

4. Tilan J., Kitlinska J. Sympathetic neurotransmitters and tumor angiogenesis-link between stress and cancer progression. J. Oncol. 2010; 2010: 539706. doi: 10.1155/2010/539706

5. Ugrumov M.V. Developing brain as an endocrine organ: a paradoxical reality. Neurochemical research. 2010; 35 (6): 837–50. doi.org/10.1007/s11064-010-0127-1

6. Катаргина Л.А., Чеснокова Н.Б., Безнос О.В., Осипова Н.А., Витер Б.В. Экспериментальное исследование патогенеза ретинопатии недоношенных как перспективное направление поиска новых медикаментозных подходов к ее профилактике и лечению. Российский офтальмологический журнал. 2016; 9 (1): 68–72. Katargina L.A., Chesnokova N.B., Beznos O.V., Osipova N.A., Viter B.V. An experimental study of the pathogenesis of retinopathy of prematurity as a promising direction of search for new medicinal approaches to its prevention and treatment. Russian ophthalmological journal. 2016; 9 (1): 68–72 (in Russian).

7. Катаргина Л.А., Хорошилова-Маслова И.П., Майбогин А.М., Панова И.Г., Осипова Н.А. Патоморфологические особенности развития экспериментальной ретинопатии недоношенных. Международный журнал прикладных и фундаментальных исследований. 2017; 3 (2): 190–4. Katargina L.A., Khoroshilova-Maslova I.P., Maybogin A.M., Panova I.G., Osipova N.A. Pathomorphological features of the development of experimental retinopathy of prematurity. International Journal of Applied and Fundamental Research. 2017; 3 (2): 190–4 (in Russian).

8. Chakroborty D., Sarkar C., Mitra R.B., et al. Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Сlin. Cancer Res. 2004; 10 (13): 4349–56.

9. Chakroborty D., Chowdhury U.R., Sarkar C., et al. Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J. Clin. Invest. 2008; 118 (4): 1380–9. doi: 10.1172/JCI33125

10. Teunis M.A., Kavelaars A., Voest E., et al. Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J. 2002; 16 (11): 1465–7.

11. Sarkar C., Chakroborty D., Mitra R.B., et al. Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2004; 287 (4): H1554-60.

12. Moreno-Smith M., Lutgendorf S.K., Sood A.K. Impact of stress on cancer metastasis. Future Oncol. 2010; 6 (12): 1863–81. doi: 10.2217/fon.10.142

13. Dvorak H.F. Angiogenesis: update 2005. J. Thromb. Haemost. 2005; 3 (8): 1835–42.

14. Daly C.J., McGrath J.C. Previously unsuspected widespread cellular and tissue distribution of β-adrenoceptors and its relevance to drug action. Trends Pharmacol. Sci. 2011; 32 (4): 219–26. doi: 10.1016/j.tips.2011.02.008

15. Cole S.W., Sood A.K. Molecular pathways: beta-adrenergic signaling in cancer. Clin. Cancer Res. 2012; 18 (5): 1201–6. doi: 10.1158/1078-0432.CCR-11-0641

16. Vinci M.C., Bellik L., Filippi S., Ledda F., Parenti A. Trophic effects induced by alpha1D-adrenoceptors on endothelial cells are potentiated by hypoxia. Am. J. Physiol. Heart Circ. Physiol. 2007; 293 (4): H2140-7.

17. Guimaraes S., Moura D. Vascular adrenoceptors: an update. Pharmacol. Rev. 2001; 53: 319–56.

18. Dal Monte M., Martini D., Latina V., et al. Beta-adrenoreceptor (β-AR) agonism influences retinal responses to hypoxia in a mouse model of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2012; 53: 2181–92.

19. Ricci B., Ricci F., Maggiano N. Oxygen-induced retinopathy in the newborn rat: morphological and immunohistological findings in animals treated with topical timolol maleate. Ophthalmologica. 2000; 214: 136–9.

20. Filippi L., Cavallaro G., Fiorini P., et al. Study protocol: safety and efficacy of propranolol in newborns with Retinopathy of Prematurity (PROP-ROP): ISRCTN18523491. BMC Pediatr. 2010; 10: 83.


Review

For citations:


Katargina L.A., Khoroshilova-Maslova I.P., Bondarenko N.S., Nikishina J.O., Murtazina A.R., Maybogin A.M., Osipova N.A., Panova A.Yu., Sudovskaya T.V., Ugryumov M.V. Angiogenic properties of catecholamines from the viewpoint of the pathogenesis of retinopathy of prematurity. Russian Ophthalmological Journal. 2018;11(4):49-54. (In Russ.) https://doi.org/10.21516/2072-0076-2018-11-4-49-54

Views: 874


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)