Preview

Russian Ophthalmological Journal

Advanced search

Fractal phototherapy in visual rehabilitation of patients with Stargardt disease

https://doi.org/10.21516/2072-0076-2025-18-4-74-82

Abstract

Currently, there are no effective drug therapies for Stargardt disease (SD), although innovative strategies are being sought in several directions. Even minor improvements in individual visual characteristics are of great importance for improving the quality of life (QL) of visually impaired patients. Therefore, non-drug strategies for visual rehabilitation, with special attention paid to technologies that affect the plasticity of the visual system, can play a decisive role in improving QL.

Purpose of the study was to evaluate the effectiveness of visual rehabilitation using fractal phototherapy (FP), a neuroplasticity-activating method, in virtual reality in patients with SD based on electroretinography data.

Material and methods. Three patients with SD of STGD1 phenotype were observed.

Results. In all patients, a decrease in the central retinal activity compared to the age norm was documented before therapy, according to mfERG data, as well as a generalized decrease in functional retinal activity, according to full-field ERG (cone and flicker ERG). After a 2-week course of fractal photostimulation in virtual reality, a tendency towards an increase in the amplitude of the a-wave of the photopic ganzfeld ERG (p = 0.0728) and a decrease in its peak latency (p = 0.0625), as well as an increase in the amplitude of photopic low-frequency RERG at 10 and 12 Hz, in the generation of which cone photoreceptors make a dominant contribution, was observed. This indicates an activating effect of FP on the function of photoreceptors, which is significant for ABCA4 variants leading to disruption of the visual cycle and functioning of visual cells. The most significant and statistically highly significant changes were documented for the mfERG amplitude in the fovea zone (p = 0.0017), which is especially important for the subjective visual sensations of patients and their daily activities.

Conclusion. In future studies, it is advisable to confirm the obtained patterns of the effect of FP on ERG in a larger group of patients with SD and clarify the indications for visual training using FP in various phenotypes of the disease.

About the Authors

V. I. Kotelin
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Vladislav I. Kotelin — Cand. of Med. Sci., senior researcher, department of clinical physiology of vision named after S.V. Kravkov

14/19, Sadovaya-Chernogryazskaya St., Moscow,105062



M. V. Zueva
Helmholtz National Medical Research Center of Eye Diseases; Institute for Biomedical Problems оf the Russian Academy of Sciences
Russian Federation

Marina V. Zueva — Dr. of Biol. Sci., professor, head of the department of clinical physiology of vision named after S.V. Kravkov, Helmholtz National Medical Research Center of Eye Disease, leading reseacher, Institute for Biomedical Problems оf the Russian Academy of Sciences

14/19, Sadovaya-Chernogryazskaya St., Moscow,105062,

76a, Khoroshevskoe highway, Moscow, 123007



N. V. Neroeva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Natalia V. Neroeva  — Dr. of Med. Sci., head of the department of pathology of the retina and optic nerve

14/19, Sadovaya-Chernogryazskaya St., Moscow,105062



I. V. Zolnikova
Helmholtz National Medical Research Center of Eye Diseases; Research Centre for Medical Genetics
Russian Federation

Inna V. Zolnikova — Dr. of Med. Sci., senior researcher, department of clinical physiology of vision named after S.V. Kravkov, Helmholtz National Medical Research Center of Eye Disease, professor, chair of ophthalmogenetics, Research Centre for Medical Genetics

14/19, Sadovaya-Chernogryazskaya St., Moscow,105062,

1, Moskvorechie St., Moscow, 115522



M. V. Prokopev
Federal State Budgetary Institution “VNIIIMT” of Roszdravnadzor
Russian Federation

Maxim V. Prokopev — Cand. of Med. Sci., deputy head of the center for ensuring the safety of circulation of medical products in medical organizations

24, p. 16, Kashirskoe shosse, Moscow, 115478

 

 



D. Yu. Kolesnikov
Institute for Biomedical Problems оf the Russian Academy of Sciences
Russian Federation

Dmitry Yu. Kolesnikov — leading specialist of the scientific laboratory “Psychological and psychophysiological studies of professional activity”

76a, Khoroshevskoe highway, Moscow, 123007



References

1. Walia S, Fishman GA. Natural history of phenotypic changes in Stargardt macular dystrophy. Ophthalmic Genet. 2009; 30 (2): 63–8. doi:10.1080/13816810802695550

2. Stone EM, Andorf JL. Whitmore SS, et al. Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology. 2017; 124 (9): 1314–31. doi: 10.1016/j.ophtha.2017.04.008

3. Zolnikova I.V., Kadyshev V.V., Marakhonov A.V., et al. Clinical and genetic correlations of inherital retinal disease with mutations in the ABCA4 gene by patients of the Russian population. Ophthalmology in Russia. 2021; 18 (4): 897–907 (In Russ.). https://doi.org/10.18008/1816-5095-2021-4-897-907

4. Festok M, Klufas MA. Stargardt’s: The state of the art in 2024. An in-depth review of the pathophysiology and diagnostic clues, as well as potential therapies on the horizon. Review of Ophthalmol. 2024; Published 10 October. Available at https://www.reviewofophthalmology.com/article/stargardts-the-state-of-the-art-in-2024

5. Allikmets R. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997; 17 (1): 122. doi:10.1038/ng0997-122a

6. Al-Khuzaei S, Broadgate S, Foster CR, et al. An overview of the genetics of ABCA4 retinopathies, an evolving story. Genes (Basel). 2021; 12 (8): 1241. doi: 10.3390/genes12081241

7. Glazer LC, Dryja TP. Understanding the etiology of Stargardt’s disease. Ophthalmol Clin North Am. 2002; 15 (1): 93–100, viii. doi: 10.1016/s0896-1549(01)00011-6

8. Ostrovsky MA, Feldman TB Chemistry and molecular physiology of vision: the photosensitive protein rhodopsin. Russ Chem Rev. 2012; 81 (11): 1071–90. doi: 10.1070/RC2012v081n11ABEH004309

9. Tsin A, Betts-Obregon B, Grigsby J. Visual cycle proteins: structure, function, and roles in human retinal disease. J Biol Chem. 2018; 293 (34): 13016–21. doi: 10.1074/jbc.AW118.003228

10. Ostrovsky M.A. Molecular physiology of the visual pigment rhodopsin: Current directions. Russian physiological journal named after I.M. Sechenov. 2020; 106 (4): 401–20 (In Russ.). https://doi.org/10.31857/S0869587324070065

11. Maugeri A, Klevering BJ, Rohrschneider K, et al. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet. 2000; 67 (4): 960–6. doi:10.1086/303079

12. Parmar VM, Parmar T, Arai E, Perusek L, Maeda A. A2E-associated cell death and inflammation in retinal pigmented epithelial cells from human induced pluripotent stem cells. Stem Cell Res. 2018; 27: 95–104. doi: 10.1016/j.scr.2018.01.014

13. Giacalone JC, Scruggs BA. The pathology of Stargardt disease and future treatment horizons. Retinal Physician. 2024; 21: 8–12. https://www.retinalphysician.com/issues/2024/novemberdecember/the-pathology-of-stargardt-disease/

14. Dontsov AE, Sakina NL, Ostrovsky MA. Light-induced release of A2E photooxidation toxic products from lipofuscin granules of human retinal pigment epithelium. Dokl. Biochem. Biophys. 2009; 425: 98–101. https://doi.org/10.1134/s1607672909020112

15. Shah M, Zaman M, Khan MT, Khan MD. Visual rehabilitation of patients with Stargardt’s disease. J Coll Physicians Surg Pak. 2008; 18 (5): 294–8. PMID: 18541085.

16. Haddley K. Stargardt disease: Light at the end of the tunnel. Drugs of the Future. 2011; 36 (7): 527. https://doi.org/10.1358/dof.2011.036.07.1673558

17. Sofi F, Sodi A, Franco F, et al. Dietary profile of patients with Stargardt’s disease and retinitis pigmentosa: is there a role for a nutritional approach? BMC Ophthalmol. 2016; 16: 13. doi: 10.1186/s12886-016-0187-3

18. Alsberge JB, Agarwal A. Late-onset Stargardt disease. Am J Ophthalmol Case Rep. 2022; 26: 101429. doi: 10.1016/j.ajoc.2022.101429

19. Kohli P, Tripathy K, Kaur K. Stargardt Disease. [Updated 2024 Jan 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK587351/

20. Hussain RM, Ciulla TA, Berrocal AM, et al. Stargardt macular dystrophy and evolving therapies. Expert Opin Biol Ther. 2018; 18 (10): 1049–59. doi: 10.1080/14712598.2018.1513486

21. Huang D, Heath Jeffery RC, Aung-Htut MT, et al. Stargardt disease and progress in therapeutic strategies. Ophthalmic Genet. 2022 Feb; 43 (1): 1–26. doi: 10.1080/13816810.2021.1966053

22. Dyka FM, Molday LL, Chiodo VA, Molday RS, Hauswirth WW. Dual ABCA4-AAV vector treatment reduces pathogenic retinal A2E accumulation in a mouse model of autosomal recessive Stargardt disease. Hum Gene Ther. 2019; 30 (11): 1361–70. doi:10.1089/hum.2019.132

23. Chan YK, Dick AD, Hall SM, et al. Inflammation in viral vector– mediated ocular gene therapy: a review and report from a workshop hosted by the Foundation Fighting Blindness, 9/2020. Transl Vis Sci Technol. 2021; 10 (4): 3. doi: 10.1167/tvst.10.4.3

24. Seitz IP, Wozar F, Ochakovski A, et al. Dose-dependent progression of chorioretinal atrophy at the injection site after subretinal injection of rAAV2/8 in nonhuman primates. Ophthalmol Sci. 2024; 4 (5): 100516. doi: 10.1016/j.xops.2024.100516

25. Safety and effects of a single intravitreal injection of vMCO-010 optogenetic therapy in subjects with Stargardt disease (STARLIGHT). ClinicalTrials.gov Identifier: NCT05417126. Updated November 9, 2023. Accessed September 9, 2024. https://clinicaltrials.gov/study/NCT05417126

26. Safety and tolerability of sub-retinal transplantation of hESC-derived RPE (MA09-hRPE) cells in patients with advanced dry age-related macular degeneration (Dry AMD). ClinicalTrials.gov Identifier: NCT01344993. Updated July 7, 2021. Accessed September 9, 2024. https://clinicaltrials.gov/study/NCT01344993

27. Subretinal transplantation of hESC-derived RPE(MA09-hRPE) cells in patients with Stargardt’s macular dystrophy. ClinicalTrials.gov Identifier: NCT01345006. Updated July 7, 2021. Accessed September 9, 2024. https://clinicaltrials.gov/study/NCT01345006

28. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell–derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of 2 open-label phase 1/2 studies. Lancet. 2015; 385 (9967): 509–16. doi: 10.1016/S0140-6736(14)61376-3

29. Mehat MS, Sundaram V, Ripamonti C, et al. Transplantation of human embryonic stem cell–derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018; 125 (11): 1765–75. https://doi.org/10.1016/j.ophtha.2018.04.037

30. Colenbrander A. Assessment of functional vision and its rehabilitation. Acta Ophthalmologica. 2010; 88 (2): 159–269, e3-356. https://doi.org/10.1111/j.1755-3768.2009.01670.x

31. Zueva MV. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scaleinvariance and fractal complexity of the visible world. Front. Aging Neurosci. 2015; 7: 135. doi: 10.3389/fnagi.2015.00135

32. Zueva MV, Neroeva NV, Zhuravleva AN, et al. Fractal phototherapy in maximizing retina and brain plasticity. Adv Neurobiol. 2024; 36: 585–637. https://doi.org/10.1007/978-3-031-47606-8_31

33. Zueva M.V., ed. Nonlinear eye: New technologies of visual rehabilitation. St. Petersburg, BMM Publishing House, 2024 (In Russ.).

34. Robson AG, Frishman LJ, Grigg J, et al. ISCEV Standard for full-field clinical electroretinography (2022 update). Doc Ophthalmol. 2022; 144 (3): 165–77. doi: 10.1007/s10633-022-09872-0

35. Zueva M.V., Neroev V.V., Tsapenko I.V., et al. The topographic diagnosis of retinal function in rhegmatogenous retinal detachment by the method of ERG in wide range of frequencies. Russian ophthalmological journal. 2009; 2: 18–22 (In Russ.).

36. Hoffmann MB, Bach M, Kondo M, et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2021 update). Doc Ophthalmol. 2021; 142 (1): 5–16. doi: 10.1007/s10633-020-09812-w

37. Zueva M.V., Kotelin V.I., Neroeva N.V., Fadeev D.V., Manko O.M. Problems and prospects of new methods of light stimulation in visual rehabilitation. Sensory systems. 2023; 37 (2): 93–118 (In Russ.). https://sciencejournals.ru/cgi/getPDF.pl?jid=sensis&year=2023&vol=37&iss=2&file=SenSis2302007Zueva.pdf

38. Zueva M.V., Kotelin V.I., Neroeva N.V., Zhuravleva A.N., Tsapenko I.V. Virtual reality in visual rehabilitation. Russian ophthalmological journal. 2024; 17 (3): 113–8 (In Russ.). https://doi.org/10.21516/2072-0076-2024-17-3-113-118

39. Verdina T, Giacomelli G, Sodi A, et al. Biofeedback rehabilitation of eccentric fixation in patients with Stargardt disease. Eur J Ophthalmol. 2013 Sep-Oct; 23 (5): 723–31. doi: 10.5301/ejo.5000291

40. Scuderi G, Verboschi F, Domanico D, Spadea L. Fixation improvement through biofeedback rehabilitation in Stargardt Disease. Case Rep Med. 2016; 2016: 4264829. doi: 10.1155/2016/4264829

41. Melillo P, Prinster A, Di Iorio V, et al. Biofeedback rehabilitation and visual cortex response in Stargardt’s Disease: A randomized controlled trial. Transl Vis Sci Technol. 2020; 9 (6): 6. doi: 10.1167/tvst.9.6.6

42. Qian T, Xu X, Liu X, et al. Efficacy of MP-3 microperimeter biofeedback fixation training for low vision rehabilitation in patients with maculopathy. BMC Ophthalmol. 2022; 22 (1): 197. doi: 10.1186/s12886-022-02419-6

43. Milash S.V., Tarutta E.P., Stalmakhova R.R., Zolnikova I.V. Microperimetric biofeedback rehabilitation in patients with Stargardt diseas: the first Russian experience. Russian pediatric ophthalmology. 2025; 20 (3): 182–90 (In Russ.). doi: 10.17816/rpoj679820

44. Ratra D, Rakshit A, Ratra V. Visual rehabilitation using video game stimulation for Stargardt disease. Ther Adv Ophthalmol. 2019; 11: 2515841419831158. doi: 10.1177/2515841419831158

45. Schatz A, Arango-Gonzalez B, Fischer D, et al. Transcorneal electrical stimulation shows neuroprotective effects in retinas of light-exposed rats. Invest Ophthalmol Vis Sci. 2012; 53 (9): 5552–61. doi: 10.1167/iovs.12-10037

46. Sehic A, Guo S, Cho KS, et al. Electrical stimulation as a means for improving vision. Am J Pathol. 2016; 186 (11): 2783–97. doi: 10.1016/j.ajpath.2016.07.017

47. Röck T, Schatz A, Naycheva L, et al. Transkorneale elektrostimulation bei patienten mit morbus Stargardt. [Effects of transcorneal electrical stimulation in patients with Stargardt’s disease. Ophthalmologe. 2013; 110 (1): 68–73 (In German). doi: 10.1007/s00347-012-2749-y

48. Balatskaya N.V., Fadeev V.V., Zueva M.V., Neroeva N.V.Local production of neurotrophic factors under influence of fractal stimulation phototherapy on the rabbit’s retina. Molecular medicine. 2023; 21 (3): 52–8 (In Russ.). https://doi.org/10.29296/24999490-2023-05-08

49. Neroev V.V., Zueva M.V., Manakhov P.A., et al. [A method for improving the functional activity of the visual system using fractal phototherapy using a stereoscopic display. Patent RF No. 2773684. 2022 (In Russ.).

50. Sajovic J, Meglič A, Hawlina M, Fakin A. Electroretinography as a biomarker to monitor the progression of Stargardt disease. Int J Mol Sci. 2022; 23: 16161. https://doi.org/10.3390/ijms232416161

51. Lois N, Holder GE, Bunce C, Fitzke FW, Bird AC. Phenotypic subtypes of Stargardt macular dystrophy. Arch Ophthalmol. 2001; 119 (3): 359–69. doi: 10.1001/archopht.119.3.359

52. Kretschmann U, Seeliger MW, Ruether K, et al. Multifocal electroretinography in patients with Stargardt’s macular dystrophy. Br J Ophthalmol. 1998; 82 (3): 267–75. doi: 10.1136/bjo.82.3.267


Review

For citations:


Kotelin V.I., Zueva M.V., Neroeva N.V., Zolnikova I.V., Prokopev M.V., Kolesnikov D.Yu. Fractal phototherapy in visual rehabilitation of patients with Stargardt disease. Russian Ophthalmological Journal. 2025;18(4):74-82. (In Russ.) https://doi.org/10.21516/2072-0076-2025-18-4-74-82

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)