Preview

Russian Ophthalmological Journal

Advanced search

Effects of ultraviolet corneal cross-linking upon the limbus. Literature review

https://doi.org/10.21516/2072-0076-2025-18-4-151-156

Abstract

Today, corneal ultraviolet (UV) collagen cross-linking (CXL) appears to be the most effective and preferable technology for treating keratectasia. CXL is a simple, minimally invasive procedure, therefore, it has become the most reliable treatment for corneal degeneration, compared to other surgical modalities. In the vast majority of cases, CXL provides good clinical and functional outcomes and remains the safest technique for the treatment of corneal degenerations. The data from experimental studies and clinical observations indicate the potential of developing CXL-induced damage to the limbal niche structures. This process contributes to the development of cytotoxicity, stimulates apoptosis, reduces cell proliferation and can result in delayed cellular mutations. It is necessary to protect corneal limbus from undesired UV exposure during CXL. This can be achieved by forming the required diameter of the UV spot (8–9 mm), and by using filters or protective rings that prevent UV rays from reaching the corneal periphery. There is still a need for long-term experimental and clinical studies on the effect of UVA radiation on sensitive limbal structures in order to adjust CXL protocols and minimize the risk of possible complications.

About the Authors

M. M. Bikbov
Ufa Research Institute of Eye Diseases, Bashkir State Medical University
Russian Federation

Mukharram М. Bikbov — Dr. of Med. Sci., professor, director

University, 90, Pushkin St., Ufa, 450008



A. R. Khalimov
Ufa Research Institute of Eye Diseases, Bashkir State Medical University
Russian Federation

Azat R. Khalimov — Dr. of Biol. Sci., head of the scientific and innovative department

University, 90, Pushkin St., Ufa, 450008



N. E. Shevchuk
Ufa Research Institute of Eye Diseases, Bashkir State Medical University
Russian Federation

Natalya E. Shevchuk — Dr. of Biol. Sci., deputy director of science

University, 90, Pushkin St., Ufa, 450008



G. M. Kazakbaeva
Ufa Research Institute of Eye Diseases, Bashkir State Medical University
Russian Federation

Gulli M. Kazakbayeva — Cand. of Med. Sci., head of the department of ophthalmological and medical epidemiology

University, 90, Pushkin St., Ufa, 450008



L. I. Gilemzyanova
Ufa Research Institute of Eye Diseases, Bashkir State Medical University
Russian Federation

Leysan I. Gilemzyanova — head of the laboratory of experimental research

University, 90, Pushkin St., Ufa, 450008



I. D. Valishin
Ufa Research Institute of Eye Diseases, Bashkir State Medical University
Russian Federation

Iskander D. Valishin — ophthalmologist of the 1st microsurgical department

University, 90, Pushkin St., Ufa, 450008



References

1. Garg P, Das S, Roy A. Collagen Cross-linking for Microbial Keratitis. Middleton East Afr J Ophthalmol. 2017; 24 (1): 18–23. doi: 10.4103/meajo.MEAJO_305_16

2. Konstantopoulos A, Liu Y-C, Teo EP, at al. Corneal Stability of LASIK and SMILE When Combined With Collagen Cross-Linking. Transl Vis Sci Technol. 2019; 8 (3): 21. doi: 10.1167/tvst.8.3.21

3. Van Tigchelt L, Van Eijgen J, Delbeke H. Alternative indications for corneal crosslinking. J Cataract Refract Surg. 2021; 47 (10): 1360–66. doi: 10.1097/j.jcrs.0000000000000663

4. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003; 135 (5): 620–7. doi: 10.1016/s0002-9394(02)02220-1

5. Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA-riboflavin cross-linking of the cornea. Cornea. 2007; 26 (4): 385–9. doi: 10.1097/ICO.0b013e3180334f78

6. Vetter JM, Tubic-Grozdanis M, Faust M, et al. Effect of various compositions of riboflavin eye drops on the intraoperative corneal thickness during UVA-crosslinking in keratoconus eyes. Klin Monbl Augenheilkd. 2011; 228 (6): 509–14 (In German). doi: 10.1055/s-0031-1273406

7. Karotkar KS, Karotkar SA, Bhirud KM, Lakra MS. Comparison of Continuous versus Pulsed Mode in Accelerated Corneal Collagen Cross-linking for Keratoconus. Middle East Afr J Ophthalmol. 2023; 29 (4): 190–5. doi: 10.4103/maejor.meajo_113_23

8. Hac agaoglu S, Turhan SA, Toker E. A comparison of conventional and accelerated corneal crosslinking: corneal epithelial remodeling and in vivo confocal microscopy analysis. Int Ophthalmol. 2024; 44 (1): 87. doi: 10.1007/s10792-024-03020-0

9. Khalimov A.R., Usubov E.L. Morphological assessment of changes in the cornea of experimental animals after ultraviolet corneal crosslinking. Point of View. East – West. 2021; 1: 66–9 (In Russ.). https://doi.org/10.25276/2410-1257-2021-1-66-69

10. Subasinghe SK, Ogbuehi KC, Mitchell L, Dias GJ. Morphological alterations of the cornea following crosslinking treatment (CXL). Clin Anat. 2021; 34 (6): 859–66. doi: 10.1002/ca.23728

11. Zamora KV, Miles JJ. Polymicrobial keratitis after a collagen crosslinking procedure with postoperative use of a contact lens. Cornea. 2009; 28 (4): 474–6. doi: 10.1097/ICO.0b013e31818d381a

12. Seiler TG, Schmidinger G, Fischinger I, Koller T, Seiler T. Complications of corneal cross-linking. Ophthalmologe. 2013; 110 (7): 639–44 (In German). doi: 10.1007/s00347-012-2682-0

13. Rana M, Lau A, Aralikatti A, Shah S. Severe microbial keratitis and associated perforation after corneal crosslinking for keratoconus. Contact Lens and Anterior Eye. 2015; 38 (2): 134–7. doi: 10.1016/j.clae.2014.10.004

14. Uysal BS, Yaman D, Sarac O, Akcay E, Cagil N. Sterile keratitis after uneventful corneal collagen cross-linking in a patient with Axenfeld-Rieger syndrome. Int Ophthalmol. 2019; 39 (5): 1169–73. doi: 10.1007/s10792-018-0907-1

15. Krok M, Wroblewska-Czajka E, Kokot J, et al. Retrospective analysis of sterile corneal infiltrates in patients with keratoconus after cross-linking procedure. J Clin Med. 2022; 11 (3): 585. doi: 10.3390/jcm11030585

16. Pecorella I, Appolloni R, Tiezzi A, Plateroti P, Plateroti R. Histological findings in a failed corneal riboflavin-UVA collagen cross-linking performed for progressive keratoconus. Cornea. 2013; 32 (2): 191–5. doi: 10.1097/ICO.0b013e3182553aac

17. Taneri S, Oehler S. Complications after corneal cross-linking. Klin Monbl Augenheilkd. 2015; 232 (1): 51–60 (In German). doi: 10.1055/s-0034-1382963

18. Thoft RA. The role of the limbs in ocular surface maintenance and repair. Acta Ophthalmol Suppl. 1989; 192: 91–4. doi: 10.1111/j.1755-3768.1989.tb07099.x1

19. Shevelyuk N.N., Radchenko A.V., Stadnikov A.A. The structural and functional basis of physiological and reparative regeneration of corneal tissues. Journal of anatomy and histopathology. 2019; 8 (2): 82–90 (In Russ.). doi: 10.18499/2225-7357-2019-8-2-82-90

20. Nikolaeva L.R., Chentsova E.V. Limbic cellular insufficiency. Vestnik oftal’mologii. 2006; 122 (3): 43–6 (In Russ.).

21. Dubovikov A.S., Gavrilyuk I.O., Kulikov A.N., et al. Limbal stem cell deficiency: etiology, pathogenesis, principles and prospects of surgical treatment. Russian Ophthalmological Journal. 2019; 12 (1): 103–11 (In Russ.). https://doi.org/10.21516/2072-0076-2019-12-1-103-111

22. Shortt AJ, Secker GA, Munro PM, et al. Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells. 2007; 25 (6): 1402–9. doi: 10.1634/stemcells.2006-0580

23. Dahle J, Kvam E. Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiation. Cancer Research. 2003 Apr 1; 63 (7): 1464–9. PMID: 12670891.

24. Sage E, Girard P-M, Francesconi S. Unravelling UVA-induced mutagenesis. Photochemical & Photobiological Sciences. 2012; 11 (1): 74–80. doi: 10.1039/c1pp05219e

25. Moore JE, Schiroli D, Moore CBT. Potential effects of corneal crosslinking upon the limbus. Biomed Res Int. 2016; 2016: 5062064. doi: 10.1155/2016/5062064

26. Matalia H, Shetty R, Dhamodaran K, et al. Potential apoptotic effect of ultraviolet-A irradiation during cross-linking: a study on ex vivo cultivated limbal epithelial cells. Br J Ophthalmol. 2012; 96 (10): 1339–45. doi: 10.1136/bjophthalmol-2012-301811

27. Zamani M, Nejaddehbashi F, Bayati V, Nasrolahi A. Evaluation of effects of riboflavin and/or ultraviolet-A on survival of rat limbal epithelial stem cells in ex-vivo. Indian J Ophthalmol. 2023; 71 (1): 75–9. doi: 10.4103/ijo.IJO_1003_22

28. Moore J E, Atkinson SD, Azar DT, et al. Protection of corneal epithelial stem cells prevents ultraviolet A damage during corneal collagen crosslinking treatment for keratoconus. British Journal of Ophthalmology. 2014; 98 (2): 270–4. doi: 10.1136/bjophthalmol-2013-303816

29. Wollensak G, Mazzotta C, Kalinski T, Sel S. Limbal and conjunctival epithelium after corneal cross-linking using riboflavin and UVA. Cornea. 2011; 30 (12): 1448–54. doi: 10.1097/ICO.0b013e3182199d7e

30. Kozobolis V, Gkika M, Sideroudi H, et al. Effect of Riboflavin/UVA collagen cross-linking on central cornea, limbus and intraocular pressure. Experimental Study in Rabbit Eyes. Acta Medica (Hradec Kralove). 2016; 59 (3): 91–6. doi: 10.14712/18059694.2016.96

31. Thorsrud A, Nicolaissen B, Drolsum L. Corneal collagen crosslinking in vitro: inhibited regeneration of human limbal epithelial cells after riboflavinultraviolet-A exposure. J Cataract Refract Surg. 2012; 38 (6): 1072–6. doi: 10.1016/j.jcrs.2011.12.038

32. U akhan O, Bayraktutar B. Morphology of the corneal limbus following standard and accelerated corneal collagen cross-linking (9 mW/cm2) for keratoconus. Cornea. 2017; 36 (1): 78–84. doi: 10.1097/ICO.0000000000001029

33. Shetty R, Metalia H, Nuijts R, et al. Safety profile of accelerated corneal cross-linking versus conventional cross-linking: a comparative study on ex vivo-cultured limbal epithelial cells. Br J Ophthalmol. 2015; 99 (2): 272–80. doi: 10.1136/bjophthalmol-2014-305495

34. Krumeich JH, Brand-Saberi B, Chankiewitz V, Chankiewitz E, Guthoff R. Induction of neoplasia after deep anterior lamellar keratoplasty in a CXL-treated cornea. Cornea. 2014; 33 (3): 313–6. doi: 10.1097/ICO.0000000000000047

35. Pellegrini G, Golisano O, Paterna P, et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. The Journal of Cell Biology. 1999; 145 (4): 769–82. doi: 10.1083/jcb.145.4.769

36. Koller T, Schumacher S, Fankhauser F, Seiler T. Riboflavin/ultraviolet a crosslinking of the paracentral cornea. Cornea. 2013; 32 (2): 165–8. doi: 10.1097/ICO.0b013e318269059b

37. Spadea L. Corneal collagen cross-linking with riboflavin and UVA irradiation in pellucid marginal degeneration. J Refract Surg. 2010; 26 (5): 375–7. doi: 10.3928/1081597X-20100114-03

38. Hafezi F, Gatzioufas Z, Seiler TG, Seiler T. Corneal collagen cross-linking for Terrien marginal degeneration. J Refract Surg. 2014; 30 (7): 498–500. doi: 10.3928/1081597X-20140527-02

39. Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. The Ocular Surface. 2013; 11 (2): 65–74. doi: 10.1016/j.jtos.2013.01.002

40. Anisimov S.I., Anisimova S.Y., Mistryukov A.S. Personalized (local) UV-crosslinking as a treatment of keratoconus and corneal ectasia. Ophthalmology in Russia. 2017; 14 (3): 195–9 (In Russ.). https://doi.org/10.18008/1816-5095-2017-3-195-199

41. Neroev VV, Yani EV, Iomdina EN, et al. Treatment of corneal ulcers by local ultraviolet crosslinking (an experimental study). Russian Ophthalmological Journal. 2020; 13 (4): 48–57 (In Russ.). https://doi.org/10.21516/2072-0076-2020-13-4-48-57

42. Seliverstov K.E., Iomdina E.N., Yani E.V. Efficiency and safety of the domestic device Keratolink for the treatment of patients with bacterial corneal ulcers. Ophthalmology in Russia. 2024; 21 (3): 502–8 (In Russ.). https://doi.org/10.18008/1816-5095-2024-3-502-508

43. Khandzhyan A.T., Iomdina E.N., Ivanova A.V., et al. Efficiency and safety of the Russian-made Keratolink device used to treat patients with stage I–II keratoconus and pellucid marginal corneal degeneration. Russian ophthalmological journal. 2024; 17 (3): 66–73 (In Russ.). https://doi.org/10.21516/2072-0076-2024-17-3-66-73

44. Mamakaeva I.R., Pleskova A.V., Iomdina E.N., Katargina L.A. Local corneal UVA crosslinking used for corneal ulcer treatment in a child. A clinical case. Russian ophthalmological journal. 2022; 15 (3): 123–7 (In Russ.). https://doi.org/10.21516/2072-0076-2022-15-3-123-127

45. Bilgihan K, Yuksel E. A new simple corneal limbal protection technique during corneal collagen cross-linking. Eye & Contact Lens. 2015; 41 (2): 130–1. doi: 10.1097/icl.0000000000000144

46. Bikbov M.M., Khalimov A.R., Bikbova G.M., Zainullina N.B., Kharitonov S.V. A method for protecting the cornea and limbal area of the eye from exposure to ultraviolet radiation during crosslinking. RU Patent 2496457. 10.27.2013 (In Russ.).

47. Jayalalithaa V, Jambulingam M, Gupta N, Padmanabhan P, Madhavan HN. Study on polymethylmethacrylate ring in protecting limbal stem cells during collagen cross-linking. Ophthalmic Research. 2013; 50 (2): 113–6. doi: 10.1159/000351644

48. Bikbov M.M., Khalimov A.R., Bikbova G.M., et al. Ophthalmic device for retaining a drug on the surface of the cornea. Patent RU 94150. 25.01.2010 (In Russ.).

49. nar Y, Cing AK, Turkcu FM, et al. Accelerated corneal collagen crosslinking for progressive keratoconus. Cutaneous and Ocular Toxicology. 2014; 33 (2): 168–71. doi: 10.3109/15569527.2013.816724

50. Karotkar KS, Karotkar SA, Bhirud KM, Lakra MS. Comparison of continuous versus pulsed mode in accelerated corneal collagen cross-linking for keratoconus. Middle East Afr J Ophthalmol. 2023; 29 (4): 190–5. doi: 10.4103/maejor.meajo_113_23

51. Lombardo M, Pucci G, Barberi R, Lombardo G. Interaction of ultraviolet light with the cornea: clinical implications for corneal crosslinking. Journ Cat & Ref Surg. 2015; 41 (2): 446–9. doi: 10.1016/j.jcrs.2014.12.013

52. Wan KH, Ip CKY, Kua WN, et al. Transepithelial corneal collagen crosslinking using iontophoresis versus the Dresden protocol in progressive keratoconus: A meta-analysis. Clin Exp Ophthalmol. 2021; 49 (3): 228–41. doi: 10.1111/ceo.13918

53. Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009; 35 (3): 540–6. doi: 10.1016/j.jcrs.2008.11.036

54. Khalimov A.R. The role of dextran in ophthalmic riboflavin solution for UV corneal crosslinking. Point of view. East – West. 2018; 1: 136–8 (In Russ.). https://doi.org/10.25276/2410-1257-2018-1-136-138

55. Dahle J, Kvam E. Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiation. Cancer Research. 2003 Apr 1; 63 (7): 1464–9. PMID: 12670891.


Review

For citations:


Bikbov M.M., Khalimov A.R., Shevchuk N.E., Kazakbaeva G.M., Gilemzyanova L.I., Valishin I.D. Effects of ultraviolet corneal cross-linking upon the limbus. Literature review. Russian Ophthalmological Journal. 2025;18(4):151-156. (In Russ.) https://doi.org/10.21516/2072-0076-2025-18-4-151-156

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)