Effects of ultraviolet corneal cross-linking upon the limbus. Literature review
https://doi.org/10.21516/2072-0076-2025-18-4-151-156
Abstract
Today, corneal ultraviolet (UV) collagen cross-linking (CXL) appears to be the most effective and preferable technology for treating keratectasia. CXL is a simple, minimally invasive procedure, therefore, it has become the most reliable treatment for corneal degeneration, compared to other surgical modalities. In the vast majority of cases, CXL provides good clinical and functional outcomes and remains the safest technique for the treatment of corneal degenerations. The data from experimental studies and clinical observations indicate the potential of developing CXL-induced damage to the limbal niche structures. This process contributes to the development of cytotoxicity, stimulates apoptosis, reduces cell proliferation and can result in delayed cellular mutations. It is necessary to protect corneal limbus from undesired UV exposure during CXL. This can be achieved by forming the required diameter of the UV spot (8–9 mm), and by using filters or protective rings that prevent UV rays from reaching the corneal periphery. There is still a need for long-term experimental and clinical studies on the effect of UVA radiation on sensitive limbal structures in order to adjust CXL protocols and minimize the risk of possible complications.
About the Authors
M. M. BikbovRussian Federation
Mukharram М. Bikbov — Dr. of Med. Sci., professor, director
University, 90, Pushkin St., Ufa, 450008
A. R. Khalimov
Russian Federation
Azat R. Khalimov — Dr. of Biol. Sci., head of the scientific and innovative department
University, 90, Pushkin St., Ufa, 450008
N. E. Shevchuk
Russian Federation
Natalya E. Shevchuk — Dr. of Biol. Sci., deputy director of science
University, 90, Pushkin St., Ufa, 450008
G. M. Kazakbaeva
Russian Federation
Gulli M. Kazakbayeva — Cand. of Med. Sci., head of the department of ophthalmological and medical epidemiology
University, 90, Pushkin St., Ufa, 450008
L. I. Gilemzyanova
Russian Federation
Leysan I. Gilemzyanova — head of the laboratory of experimental research
University, 90, Pushkin St., Ufa, 450008
I. D. Valishin
Russian Federation
Iskander D. Valishin — ophthalmologist of the 1st microsurgical department
University, 90, Pushkin St., Ufa, 450008
References
1. Garg P, Das S, Roy A. Collagen Cross-linking for Microbial Keratitis. Middleton East Afr J Ophthalmol. 2017; 24 (1): 18–23. doi: 10.4103/meajo.MEAJO_305_16
2. Konstantopoulos A, Liu Y-C, Teo EP, at al. Corneal Stability of LASIK and SMILE When Combined With Collagen Cross-Linking. Transl Vis Sci Technol. 2019; 8 (3): 21. doi: 10.1167/tvst.8.3.21
3. Van Tigchelt L, Van Eijgen J, Delbeke H. Alternative indications for corneal crosslinking. J Cataract Refract Surg. 2021; 47 (10): 1360–66. doi: 10.1097/j.jcrs.0000000000000663
4. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003; 135 (5): 620–7. doi: 10.1016/s0002-9394(02)02220-1
5. Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA-riboflavin cross-linking of the cornea. Cornea. 2007; 26 (4): 385–9. doi: 10.1097/ICO.0b013e3180334f78
6. Vetter JM, Tubic-Grozdanis M, Faust M, et al. Effect of various compositions of riboflavin eye drops on the intraoperative corneal thickness during UVA-crosslinking in keratoconus eyes. Klin Monbl Augenheilkd. 2011; 228 (6): 509–14 (In German). doi: 10.1055/s-0031-1273406
7. Karotkar KS, Karotkar SA, Bhirud KM, Lakra MS. Comparison of Continuous versus Pulsed Mode in Accelerated Corneal Collagen Cross-linking for Keratoconus. Middle East Afr J Ophthalmol. 2023; 29 (4): 190–5. doi: 10.4103/maejor.meajo_113_23
8. Hac agaoglu S, Turhan SA, Toker E. A comparison of conventional and accelerated corneal crosslinking: corneal epithelial remodeling and in vivo confocal microscopy analysis. Int Ophthalmol. 2024; 44 (1): 87. doi: 10.1007/s10792-024-03020-0
9. Khalimov A.R., Usubov E.L. Morphological assessment of changes in the cornea of experimental animals after ultraviolet corneal crosslinking. Point of View. East – West. 2021; 1: 66–9 (In Russ.). https://doi.org/10.25276/2410-1257-2021-1-66-69
10. Subasinghe SK, Ogbuehi KC, Mitchell L, Dias GJ. Morphological alterations of the cornea following crosslinking treatment (CXL). Clin Anat. 2021; 34 (6): 859–66. doi: 10.1002/ca.23728
11. Zamora KV, Miles JJ. Polymicrobial keratitis after a collagen crosslinking procedure with postoperative use of a contact lens. Cornea. 2009; 28 (4): 474–6. doi: 10.1097/ICO.0b013e31818d381a
12. Seiler TG, Schmidinger G, Fischinger I, Koller T, Seiler T. Complications of corneal cross-linking. Ophthalmologe. 2013; 110 (7): 639–44 (In German). doi: 10.1007/s00347-012-2682-0
13. Rana M, Lau A, Aralikatti A, Shah S. Severe microbial keratitis and associated perforation after corneal crosslinking for keratoconus. Contact Lens and Anterior Eye. 2015; 38 (2): 134–7. doi: 10.1016/j.clae.2014.10.004
14. Uysal BS, Yaman D, Sarac O, Akcay E, Cagil N. Sterile keratitis after uneventful corneal collagen cross-linking in a patient with Axenfeld-Rieger syndrome. Int Ophthalmol. 2019; 39 (5): 1169–73. doi: 10.1007/s10792-018-0907-1
15. Krok M, Wroblewska-Czajka E, Kokot J, et al. Retrospective analysis of sterile corneal infiltrates in patients with keratoconus after cross-linking procedure. J Clin Med. 2022; 11 (3): 585. doi: 10.3390/jcm11030585
16. Pecorella I, Appolloni R, Tiezzi A, Plateroti P, Plateroti R. Histological findings in a failed corneal riboflavin-UVA collagen cross-linking performed for progressive keratoconus. Cornea. 2013; 32 (2): 191–5. doi: 10.1097/ICO.0b013e3182553aac
17. Taneri S, Oehler S. Complications after corneal cross-linking. Klin Monbl Augenheilkd. 2015; 232 (1): 51–60 (In German). doi: 10.1055/s-0034-1382963
18. Thoft RA. The role of the limbs in ocular surface maintenance and repair. Acta Ophthalmol Suppl. 1989; 192: 91–4. doi: 10.1111/j.1755-3768.1989.tb07099.x1
19. Shevelyuk N.N., Radchenko A.V., Stadnikov A.A. The structural and functional basis of physiological and reparative regeneration of corneal tissues. Journal of anatomy and histopathology. 2019; 8 (2): 82–90 (In Russ.). doi: 10.18499/2225-7357-2019-8-2-82-90
20. Nikolaeva L.R., Chentsova E.V. Limbic cellular insufficiency. Vestnik oftal’mologii. 2006; 122 (3): 43–6 (In Russ.).
21. Dubovikov A.S., Gavrilyuk I.O., Kulikov A.N., et al. Limbal stem cell deficiency: etiology, pathogenesis, principles and prospects of surgical treatment. Russian Ophthalmological Journal. 2019; 12 (1): 103–11 (In Russ.). https://doi.org/10.21516/2072-0076-2019-12-1-103-111
22. Shortt AJ, Secker GA, Munro PM, et al. Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells. 2007; 25 (6): 1402–9. doi: 10.1634/stemcells.2006-0580
23. Dahle J, Kvam E. Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiation. Cancer Research. 2003 Apr 1; 63 (7): 1464–9. PMID: 12670891.
24. Sage E, Girard P-M, Francesconi S. Unravelling UVA-induced mutagenesis. Photochemical & Photobiological Sciences. 2012; 11 (1): 74–80. doi: 10.1039/c1pp05219e
25. Moore JE, Schiroli D, Moore CBT. Potential effects of corneal crosslinking upon the limbus. Biomed Res Int. 2016; 2016: 5062064. doi: 10.1155/2016/5062064
26. Matalia H, Shetty R, Dhamodaran K, et al. Potential apoptotic effect of ultraviolet-A irradiation during cross-linking: a study on ex vivo cultivated limbal epithelial cells. Br J Ophthalmol. 2012; 96 (10): 1339–45. doi: 10.1136/bjophthalmol-2012-301811
27. Zamani M, Nejaddehbashi F, Bayati V, Nasrolahi A. Evaluation of effects of riboflavin and/or ultraviolet-A on survival of rat limbal epithelial stem cells in ex-vivo. Indian J Ophthalmol. 2023; 71 (1): 75–9. doi: 10.4103/ijo.IJO_1003_22
28. Moore J E, Atkinson SD, Azar DT, et al. Protection of corneal epithelial stem cells prevents ultraviolet A damage during corneal collagen crosslinking treatment for keratoconus. British Journal of Ophthalmology. 2014; 98 (2): 270–4. doi: 10.1136/bjophthalmol-2013-303816
29. Wollensak G, Mazzotta C, Kalinski T, Sel S. Limbal and conjunctival epithelium after corneal cross-linking using riboflavin and UVA. Cornea. 2011; 30 (12): 1448–54. doi: 10.1097/ICO.0b013e3182199d7e
30. Kozobolis V, Gkika M, Sideroudi H, et al. Effect of Riboflavin/UVA collagen cross-linking on central cornea, limbus and intraocular pressure. Experimental Study in Rabbit Eyes. Acta Medica (Hradec Kralove). 2016; 59 (3): 91–6. doi: 10.14712/18059694.2016.96
31. Thorsrud A, Nicolaissen B, Drolsum L. Corneal collagen crosslinking in vitro: inhibited regeneration of human limbal epithelial cells after riboflavinultraviolet-A exposure. J Cataract Refract Surg. 2012; 38 (6): 1072–6. doi: 10.1016/j.jcrs.2011.12.038
32. U akhan O, Bayraktutar B. Morphology of the corneal limbus following standard and accelerated corneal collagen cross-linking (9 mW/cm2) for keratoconus. Cornea. 2017; 36 (1): 78–84. doi: 10.1097/ICO.0000000000001029
33. Shetty R, Metalia H, Nuijts R, et al. Safety profile of accelerated corneal cross-linking versus conventional cross-linking: a comparative study on ex vivo-cultured limbal epithelial cells. Br J Ophthalmol. 2015; 99 (2): 272–80. doi: 10.1136/bjophthalmol-2014-305495
34. Krumeich JH, Brand-Saberi B, Chankiewitz V, Chankiewitz E, Guthoff R. Induction of neoplasia after deep anterior lamellar keratoplasty in a CXL-treated cornea. Cornea. 2014; 33 (3): 313–6. doi: 10.1097/ICO.0000000000000047
35. Pellegrini G, Golisano O, Paterna P, et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. The Journal of Cell Biology. 1999; 145 (4): 769–82. doi: 10.1083/jcb.145.4.769
36. Koller T, Schumacher S, Fankhauser F, Seiler T. Riboflavin/ultraviolet a crosslinking of the paracentral cornea. Cornea. 2013; 32 (2): 165–8. doi: 10.1097/ICO.0b013e318269059b
37. Spadea L. Corneal collagen cross-linking with riboflavin and UVA irradiation in pellucid marginal degeneration. J Refract Surg. 2010; 26 (5): 375–7. doi: 10.3928/1081597X-20100114-03
38. Hafezi F, Gatzioufas Z, Seiler TG, Seiler T. Corneal collagen cross-linking for Terrien marginal degeneration. J Refract Surg. 2014; 30 (7): 498–500. doi: 10.3928/1081597X-20140527-02
39. Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. The Ocular Surface. 2013; 11 (2): 65–74. doi: 10.1016/j.jtos.2013.01.002
40. Anisimov S.I., Anisimova S.Y., Mistryukov A.S. Personalized (local) UV-crosslinking as a treatment of keratoconus and corneal ectasia. Ophthalmology in Russia. 2017; 14 (3): 195–9 (In Russ.). https://doi.org/10.18008/1816-5095-2017-3-195-199
41. Neroev VV, Yani EV, Iomdina EN, et al. Treatment of corneal ulcers by local ultraviolet crosslinking (an experimental study). Russian Ophthalmological Journal. 2020; 13 (4): 48–57 (In Russ.). https://doi.org/10.21516/2072-0076-2020-13-4-48-57
42. Seliverstov K.E., Iomdina E.N., Yani E.V. Efficiency and safety of the domestic device Keratolink for the treatment of patients with bacterial corneal ulcers. Ophthalmology in Russia. 2024; 21 (3): 502–8 (In Russ.). https://doi.org/10.18008/1816-5095-2024-3-502-508
43. Khandzhyan A.T., Iomdina E.N., Ivanova A.V., et al. Efficiency and safety of the Russian-made Keratolink device used to treat patients with stage I–II keratoconus and pellucid marginal corneal degeneration. Russian ophthalmological journal. 2024; 17 (3): 66–73 (In Russ.). https://doi.org/10.21516/2072-0076-2024-17-3-66-73
44. Mamakaeva I.R., Pleskova A.V., Iomdina E.N., Katargina L.A. Local corneal UVA crosslinking used for corneal ulcer treatment in a child. A clinical case. Russian ophthalmological journal. 2022; 15 (3): 123–7 (In Russ.). https://doi.org/10.21516/2072-0076-2022-15-3-123-127
45. Bilgihan K, Yuksel E. A new simple corneal limbal protection technique during corneal collagen cross-linking. Eye & Contact Lens. 2015; 41 (2): 130–1. doi: 10.1097/icl.0000000000000144
46. Bikbov M.M., Khalimov A.R., Bikbova G.M., Zainullina N.B., Kharitonov S.V. A method for protecting the cornea and limbal area of the eye from exposure to ultraviolet radiation during crosslinking. RU Patent 2496457. 10.27.2013 (In Russ.).
47. Jayalalithaa V, Jambulingam M, Gupta N, Padmanabhan P, Madhavan HN. Study on polymethylmethacrylate ring in protecting limbal stem cells during collagen cross-linking. Ophthalmic Research. 2013; 50 (2): 113–6. doi: 10.1159/000351644
48. Bikbov M.M., Khalimov A.R., Bikbova G.M., et al. Ophthalmic device for retaining a drug on the surface of the cornea. Patent RU 94150. 25.01.2010 (In Russ.).
49. nar Y, Cing AK, Turkcu FM, et al. Accelerated corneal collagen crosslinking for progressive keratoconus. Cutaneous and Ocular Toxicology. 2014; 33 (2): 168–71. doi: 10.3109/15569527.2013.816724
50. Karotkar KS, Karotkar SA, Bhirud KM, Lakra MS. Comparison of continuous versus pulsed mode in accelerated corneal collagen cross-linking for keratoconus. Middle East Afr J Ophthalmol. 2023; 29 (4): 190–5. doi: 10.4103/maejor.meajo_113_23
51. Lombardo M, Pucci G, Barberi R, Lombardo G. Interaction of ultraviolet light with the cornea: clinical implications for corneal crosslinking. Journ Cat & Ref Surg. 2015; 41 (2): 446–9. doi: 10.1016/j.jcrs.2014.12.013
52. Wan KH, Ip CKY, Kua WN, et al. Transepithelial corneal collagen crosslinking using iontophoresis versus the Dresden protocol in progressive keratoconus: A meta-analysis. Clin Exp Ophthalmol. 2021; 49 (3): 228–41. doi: 10.1111/ceo.13918
53. Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009; 35 (3): 540–6. doi: 10.1016/j.jcrs.2008.11.036
54. Khalimov A.R. The role of dextran in ophthalmic riboflavin solution for UV corneal crosslinking. Point of view. East – West. 2018; 1: 136–8 (In Russ.). https://doi.org/10.25276/2410-1257-2018-1-136-138
55. Dahle J, Kvam E. Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiation. Cancer Research. 2003 Apr 1; 63 (7): 1464–9. PMID: 12670891.
Review
For citations:
Bikbov M.M., Khalimov A.R., Shevchuk N.E., Kazakbaeva G.M., Gilemzyanova L.I., Valishin I.D. Effects of ultraviolet corneal cross-linking upon the limbus. Literature review. Russian Ophthalmological Journal. 2025;18(4):151-156. (In Russ.) https://doi.org/10.21516/2072-0076-2025-18-4-151-156


























