Anatomical and topographic features and structural characteristics of the vitreous body
https://doi.org/10.21516/2072-0076-2025-18-4-178-184
Abstract
The article presents an analysis of literature data about the anatomical structure and topographical characteristics of the vitreous body, as well as information on the distinctive features of its internal structure in various segments. Particular attention is given to the biochemical composition and age-related structural changes of the vitreous body, which are crucial for understanding the pathogenesis of its disorders.
About the Authors
T. N. KiselevaRussian Federation
Tatiana N. Kiseleva — Dr. of Med. Sci., professor, head of ultrasound diagnostic department
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
E. K. Eliseeva
Russian Federation
Elena K. Eliseeva — Cand. of Med. Sci., researcher, ultrasound diagnostic department
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
A. L. Batalova
Russian Federation
Aset L. Batalova — PhD student of ultrasound diagnostic department
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
References
1. Epikhin A.N., Krasnov Ya.V., Epikhina Yu.N., Epikhin N.A. Pathology of the lens and vitreous body: clinical manifestations of vitreous pathology. Textbook: Publishing House of RostSMU, 2016 (In Russ.).
2. Kalinichenko R.V., Arestova N.N., Egiyan N.S. Pathology of the vitreous body in children. Possibilities of instrumental and laser surgery. Russian pediatric ophthalmology. 2018; 13 (2): 87–98 (In Russ.). http://dx.doi.org/10.18821/1993-1859-2018-13-2-87-98
3. Sebag J. Vitreous and vision degrading myodesopsia. Progress in Retinal and Eye Research. 2020; 79: 100847. https://doi.org/10.1016/j.preteyeres.2020.100847
4. Iomdina E.N., Bauer S.M., Kotliar K.E. Eye biomechanics: theoretical aspects and clinical applications. Moscow: Real Time, 2015 (In Russ.).
5. Stebnev S.D., Stebnev V.S., Malov I.V., et al. Age-related changes of the vitreous body. Kazan medical journal. 2019; 100 (1): 170–4 (In Russ.). https://doi.org/10.17816/KMJ2019-170
6. Gartner J. Vitreous electron microscopic studies on the fine structure of the normal and pathologically changed vitreoretinal limiting membrane. Surv Ophthalmol. 1964; (9): 291–4. https://doi.org/10.1007/s11419-015-0294-5
7. Murthy KR, Goel R, Subbannayya Y, et al. Proteomic analysis of human vitreous humor. Clin Proteom. 2014; 11: 29. https://doi.org/10.1186/1559-0275-11-29
8. Bévalot F, Cartiser N, Bottinelli C, et al. Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review. Forensic Toxicol. 2016; 34: 12–40. https://doi.org/10.1007/s11419-015-0294-5
9. Friedman JS, Faucher M, Hiscott P, et al. Protein localization in the human eye and genetic screen of opticin. Hum Mol Genet. 2002; 11 (11): 1333–42. https://doi.org/10.1093/hmg/11.11.1333
10. Ramesh S, Bonshek RE, Bishop PN. Immunolocalisation of opticin in the human eye. Br J Ophthalmol. 2004; 88 (5): 697–702. https://doi.org/10.1136/bjo.2003.031989
11. Reardon AJ, Le Goff M, Briggs MD, et al. Identification in vitreous and molecular cloning of opticin, a novel member of the family of leucine-rich repeat proteins of the extracellular matrix. J Biol Chem. 2000; 275 (3): 2123–9. http://dx.doi.org/10.1074/jbc.275.3.2123
12. Barnstable CJ, Tombran-Tink J. Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res. 2004; 23 (5): 561–77. https://doi.org/10.1016/j.preteyeres.2004.05.002
13. Den Hollander AI, McGee TL, Ziviello C, et al. A homozygous missense mutation in the IRBP gene (RBP3) associated with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2009; 50 (4): 1864–72. https://doi.org/10.1167/iovs.08-2497
14. Pepperberg DR, Okajima TL, Wiggert B, et al. Interphotoreceptor retinoidbinding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol. 1993; 7 (1): 61–85. https://doi.org/10.1007/BF02780609
15. Zhao C, Yang P, He H, et al. S-antigen specific T helper type 1 response is present in Behcet’s disease. Mol Vis. 2008 Aug 7; 14: 1456–64. PMID: 18685727.
16. Fujinami K, Tsunoda K, Nakamura M, Oguchi Y, Miyake Y. Oguchi disease with unusual findings associated with a heterozygous mutation in the SAG gene. Arch Ophthalmol. 2011; 129 (10): 1375–6. https://doi.org/10.1001/archophthalmol.2011.300
17. Proetzel G, Pawlowski SA, Wiles MV, et al. Transforming growth factor–β3 is required for secondary palate fusion. Nature Genetics. 1995; 11 (4): 409–14. https://doi.org/10.1038/ng1295-409
18. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human. N Engl J Med. 2000; 342: 1350–8. https://doi.org/10.1056/NEJM20000504342180
19. Chen H, Ho Y, Chou H, et al. The role of transforming growth factor-beta in retinal ganglion cells with hyperglycemia and oxidative stress. Int J Mol Sci. 2020; 21 (18): 6482. https://doi.org/10.3390/ijms21186482
20. Ruchkin M.P., Markelova E.V., Fedyashev G.A. Systemic imbalance of TGF-β isoforms in patients with various manifestations of diabetic retinopathy. Russian journal of immunology. 2024; 27 (2): 363–8 (In Russ.). https://doi.org/10.46235/1028-7221-16613-SIO
21. Erichev V.P., Poleva R.P., Khderi Kh. The role of vitreous body in pathogenesis of glaucoma. Vestnik oftal’mologii. 2021; 137 (5): 323–30 (In Russ.). https://doi.org/10.17116/oftalma2021137052323
22. Ermolaev A.P., Ilinskaya M.V., Melnikova L.I. The role of posterior vitreous detachment origin in the pathogenesis of primary angle-closure glaucoma. Natsional’nyj zhurnal glaukoma. 2016; 15 (2): 3–10 (In Russ.).
23. Muldashev E.R., Rodionov O.V., Shumkin A.M., Granadchikov V.A. Morpho-functional state of the chorioretinovitreal interface in normal and experimental surgery. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2006; 61 (11): 214–7 (In Russ.).
24. Fawcett IM, Williams RL, Wong D. Contact angles of substances used for internal tamponade in retinal detachment surgery. Graefes Arch Clin Exp Ophthalmol. 1994; 232 (7): 438–44. https://doi.org/10.1007/bf00186587
25. Kazimirova E.G., Shiryaev V.V., Lyskin P.V., Stepanov G.V., Kramarenko E.Yu. Silicone oil tamponade hydrostatics and technology for additional mechanical support of retina. Sovremennye tehnologii v medicine. 2018; 10 (4): 15–25. https://doi.org/10.17691/stm2018.10.4.02
26. Alekseev I.B., Belkin V.E., Samoylenko A.I., Gularia A.A. Vitreous. Anatomy, pathology and methods of surgical treatment (literary review). RMZh. Klinicheskaya oftal’mologiya. 2014; (4): 224–7 (In Russ.).
27. Worst JGF, Los LI. Comparative anatomy of the vitreous body in rhesus monkeys and man. DocumentaOphthalmologica.1992; 82: 169–78. https://doi.org/10.1007/bf00157007
28. Worst JGF, Los LI. Cisternal anatomy of the vitreous. Amsterdam — NY: Kugler Publications; 1995.
29. Makhacheva Z.A. Vitreous anatomy. Study guide for postgraduate professional education of doctors. Moscow: Rusprint; 2006. (In Russ.).
30. Berger E. Beiträge zur Anatomie des Auges in normalem und pathologischem Zustande. Verlag von JF Bergmann. 1887.
31. Erggelet H., Menacho A. Oftalmíametastática. Archivos de Oftalmología Hispano-Americanos. 1914; 14 (161): 288.
32. Ruiz-Casas D. Vitreous anatomy, anterior PVR, and hypotony. Retinal detachment surgery and proliferative vitreoretinopathy: from scleral buckling to small gauge vitrectomy. Cham: Springer International Publishing. 2023. 175–83. https://doi.org/10.1007/978-3-031-11946-0_24
33. Naidenova S.I., Lutsai E.D., Astafyev I.V. Anatomical characteristics of the vitreous chamber and lens in fetuses in the intermediate fetal period of human ontogenesis. Sovremennie technologii v ophtalmologii. 2022; 1 (41): 350–4 (In Russ.). https://doi.org/10.25276/2312-4911-2022-1-350-354
34. Neroev V.V., Kiseleva T.N., Sudovskaya T.V. Complex ultrasound examination children with persisting hyperplastic primary vitreous. Vestnik oftal’mologii. 2011; 127 (4): 24–8 (In Russ.).
35. Amkhanitskaya L.I. Change of vitreous body with various pathological conditions of the eyeball. Rossiyskaya detskaya oftal’mologiya. 2014; 2: 41–50 (In Russ.).
36. Martegiani F. Novae observations de oculo humano. Neapoli: Typis Cajetani Eboli. 1814: 16: 24.
37. Stilling J. Uber den Bau de Glaskorpers. Archiv f. Ophthal. 1869; 15 Bd (3): 299–319.
38. Eisner G. Posterior vitreous detachment. Klin Monatsbl Augenheild. 1989; 194 (5): 389–92.
39. Sebag J, Balazs EA. Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci. 1989 Aug; 30 (8): 1867–71. PMID: 2759801.
40. Matyushchenko AG, Budzinskaya MV, Petrachkov DV. Modern understanding of structural and biochemical characteristics of the vitreous in eyes with normal and increased axial length. Vestnik oftal’mologii. 2021; 137 (4): 110–5 (In Russ.). https://doi.org/10.17116/oftalma2021137041110
41. Kharlap S.I., Novikov I.A., Avetisov S.E., et al. Scanning electron microscopy results of the vitreous body in asteroid hyalosis. Vestnik oftal’mologii. 2021; 137 (5): 181–8 (In Russ.). https://doi.org/10.17116/oftalma2021137052181
42. Boiko E.V., Suetov A.A., Maltsev D.S. Detachment of the posterior hyaloid membrane: concept, prevalence, classification, clinic and possible causes. Oftal’mologicheskie vedomosti. 2009; 2 (3): 39–46 (In Russ.).
43. Neroev V.V., Kiselevа T.N. Ultrasound in ophthalmology: guide for doctors. 1st ed. Moscow: IKAR; 2019 (In Russ.).
44. Kharlap S.I., Salikhova A.R., Avetisov K.S., Avetisov S.E. Morphological features of clinical manifestation of particular congenital lens and vitreous anomalies. Vestnik oftal’mologii. 2017; 2: 105–7 (In Russ.). https://doi.org/10.17116/oftalma20171332104-112
45. Marchenko I.Yu., Stepanova L.V., Sychev G.M. The experimental research of hydrodynamics of an eye at the intravitreally injection of fluoresceine in vitreous humor. Bulletin of the Krasnoyarsk State University. 2004; 7: 170–4 (In Russ.).
46. Shilova O.G., Geiko P.P., Krivosheina O.I. Mathematical aspects of intraocular fluid flow in the vitreous body. Bulletin of Siberian Medicine. 2012; 1: 97–102 (In Russ.).
47. Amkhanitskaya L.I., Nikolaeva G.V., Sokolova N.A. Changes in oxygen partial pressure in the vitreous body and arterial blood of rabbits depending on oxygen concentration in inspired mixture. Bulletin of experimental biology and medicine. 2015; 159 (3): 308–10 (In Russ.). https://doi.org/10.1007/s10517-015-2954-1
48. Muir ER, Zhang Y, San Emeterio Nateras O, Peng Q, Duong TQ. Human vitreous: MR imaging of oxygen partial pressure. Radiology. 2013; 266 (3): 905–11. https://doi.org/10.1148/radiol.12120777
49. Petropoulos IK, Pournaras JC, Stangos A, Pournaras C. Preretinal partial pressure of oxygen gradients before and after experimental pars plana vitrectomy. Retina. 2013: 33 (1): 170–8. https://doi.org/10.1097/IAE.0b013e318261a6b5
50. Lipatov D.V., Skladchikov S.A., Savenkova N.P., Novoderezkin V.V., Vysikailo F.I. Mathematical modeling of fluid movement inside the eyeball during intravitreal injection. Russian ophthalmological journal. 2022; 15 (2): 37–41 (In Russ.). https://doi.org/10.21516/2072-0076-2022-15-2-37-41
51. Liu G, Li A, Liu J, et al. Establishment of personalized finite element model of crystalline lens based on sweep-source optical coherence tomography. Photonics. 2022; 9: 803. https://doi.org/10.3390/photonics9110803
52. Rodionov O.V., Granadchikov V.A., Kantyukova G.A Research of ways of extravascular liquid transport to vitreal cavity with using of contrast drugs Magnevist. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2007; 12: 159–60 (In Russ.).
53. Wassilewa P, Hockwin O, Korte I. Glycogen concentration changes in retina, vitreous body and other eye tissues caused by disturbances of blood circulation. Albrecht von Graefes Arch. Klin. Ophthalmol. 1976; 199: 115–20. https://doi.org/10.1007/BF02385207
54. Danchenko E.O. The concentration of ethyl alcohol in the blood and vitreous body. Judicial examination of Belarus. 2021; 1 (12): 60–6 (In Russ.).
55. Bévalot F, Cartiser N, Bottinelli C, Fanton L, Guitton J. Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review. Forensic Toxicology. 2016; 34: 12–40. https://doi.org/10.1007/s11419-015-0294-5
56. Sanches LR, Seulin SC, Leyton V, et al. Determination of opiates in whole blood and vitreous humor: a study of the matrix effect and an experimental design to optimize conditions for the enzymatic hydrolysis of glucuronides. J Anal Toxicol. 2012; 36: 162–70 https://doi.org/10.1093/jat/bks007
57. Akimov P.A., Terekhina N.A. Biochemical analysis of the vitreous body of the eye in the postmortem diagnosis of renal failure. Bulletin of new Medical Technologies. 2013; 20 (4): 47–9 (In Russ.).
58. Onyanov A.M., Ledyankina I.A., Khohlov S.V. Validity of choice of the vitreous body as object of medicolegal research. Problems of expertise in medicine. 2007; 7 (4; 28): 64–7 (In Russ.).
Review
For citations:
Kiseleva T.N., Eliseeva E.K., Batalova A.L. Anatomical and topographic features and structural characteristics of the vitreous body. Russian Ophthalmological Journal. 2025;18(4):178-184. (In Russ.) https://doi.org/10.21516/2072-0076-2025-18-4-178-184


























