Preview

Российский офтальмологический журнал

Расширенный поиск

Новые технологии доставки гипотензивных препаратов в лечении глаукомы

https://doi.org/10.21516/2072-0076-2018-11-4-103-107

Полный текст:

Аннотация

Представлены сведения о перспективных способах доставки лекарственных препаратов для лечения глаукомы: контактные линзы, обтураторы слезных канальцев, внутрикамерные импланты, субконъюнктивальные и супрацилиарные инъекции, окулярные кольца, гидрогели, наноносители.

Об авторах

О. А. Киселева
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца»
Россия

д-р мед. наук, начальник отдела глаукомы

105062, Москва, ул. Садовая-Черногрязская, д. 14/19



А. М. Бессмертный
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца»
Россия

д-р мед. наук, старший научный сотрудник отдела глаукомы

105062, Москва, ул. Садовая-Черногрязская, д. 14/19

 



Л. В. Якубова
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца»
Россия

канд. мед. наук, старший научный сотрудник отдела глаукомы

105062, Москва, ул. Садовая-Черногрязская, д. 14/19



Список литературы

1. Ciolino J.B., Ross A.E., Tulsan R., et al. Latanoprost-eluting contact lenses in glaucomatous monkeys. Ophthalmology. 2016; 123 (10): 2085–92. doi: 10.1016/j.ophtha.2016.06.038

2. Peng C.C., Ben-Shlomo A., Mackay E.O., et al. Drug delivery by contact lens in spontaneously glaucomatous dogs. Curr. Eye Res. 2012; 37 (3): 204–11. doi: 10.3109/02713683

3. Ocular Therapeutix is currently enrolling patients in a phase 3 trial with OTX-TP. Available at: https://www.ocutx.com/research/otx-tp/

4. Perera S.A., Ting D.S., Nongpiur M.E., et al. Feasibility study of sustainedrelease travoprost punctum plug for intraocular pressure reduction in an Asian population. Clin. Ophthalmol. 2016; 10: 757–64. doi:10.2147/OPTH.S102181

5. Mati Therapeutics Inc. Announces Initiation of Phase II Study. Available at: http://www.matitherapeutics.com/about/press/compare-latanoprostto-timolol

6. Lewis R.A., Christie W.C., Day D.G., et al. Bimatoprost sustained-release implants for glaucoma therapy: 6-month results from a phase I/II clinical trial. Am. J. Ophthalmol. 2017; 175 (3): 137–47. doi: 10.1016/j.ajo.2016.11.020

7. Fu J., Sun F., Liu W., et al. Subconjunctival delivery of dorzolamide-loaded poly(ether-anhydride) microparticles produces sustained lowering of intraocular pressure in rabbits. Mol. Pharm. 2016; 13 (9): 2987–95. doi: 10.1021/acs.molpharmaceut.6b00343

8. Kopp F., Eickner T., Polei S., et al. Ultrahigh field MR imaging of a subconjunctival anti-glaucoma drug delivery system in a rabbit model. Sci. Rep. 2017; 7 (1): 15780. Available at: https://www.nature.com/articles/s41598-017-15954-w

9. Lavik E., Kuehn M.H., Shoffstall A.J., et al. Sustained delivery of timolol maleate for over 90 days by subconjunctival injection. J. Ocul. Pharmacol. Ther. 2016; 32 (10): 642–9. doi: 10.1089/jop.2016.0042

10. Wong T.T., Novack G.D., Natarajan J.V., et al. Nanomedicine for glaucoma: sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops. Drug Deliv. Transl. Res. 2014; 4 (4): 303–9. doi: 10.1007/s13346-014-0196-9

11. Kim Y.C., Edehauser H.F., Prausnitz M.R. Targeted delivery of anti-glaucoma drugs to the supraciliary space using microneedles. Invest. Ophthalmol. Vis. Sci. 2014; 55 (11): 7387–97. doi: 10.1167/iovs.14-14651

12. Chiang B., Kim Y.C., Doty A.C., et al. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma. J. Control Release 2016; 228: 48–57. doi: 10.1016/j.jconrel.2016.02.041

13. Stewart R.H., Novak S. Introduction of the OCUSERT ocular system to an ophthalmic practice. Ann. Ophthalmol. 1978; 10 (3): 325–30.

14. Brandt J.D., Sall K., DuBiner H., et al. Six-month intraocular pressure reduction with a topical bimatoprost ocular insert. Results of a Phase II randomized controlled study. Ophthalmology. 2016; 123 (8): 1685–94. doi: 10.1016/j.ophtha.2016.04.026

15. Dubey A., Prabhu P. Formulation and evaluation of stimuli-sensitive hydrogels of timolol maleate and brimonidine tartrate for the treatment of glaucoma. Int. J. Pharm. Invest. 2014; 4 (3): 112–8. doi: 10.4103/2230-973X.138340

16. Fedorchak M.V., Conner I.P., Schuman J.S., et al. Long-term glaucoma drug delivery using a topically retained gel/microsphere eye drop. Sci. Rep. 2017; 7 (1): 8639. doi: 10.1038/s41598-017-09379-8

17. Wadhwa S., Paliwal R., Paliwal S.R., Vyas S.P. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J. Drug Target. 2010; 18 (4): 292–302. doi: 10.3109/10611860903450023

18. Fulgencio Gde. O., Viana F.A., Ribeiro R.R., et al. New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J. Ocul. Pharmacol. Ther. 2012; 28 (4): 350–8. doi: 10.1089/jop.2011.0174

19. Ibrahim M.M., Abd-Elgawad A.H., Soliman O.A., Jablonski M.M. Natural bioadhesive biodegradable nanoparticle-based topical ophthalmic formulations for management of glaucoma. Transl. Vis. Sci. Technol. 2015; 4 (3): 12. doi: 10.1167/tvst.4.3.12

20. Cheng Y.H., Tsai T.H., Jhan Y.Y., et al. Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment. Carbohydr. Polym. 2016; 144: 390–9. https://doi.org/10.1016/j.carbpol.2016.02.080

21. Gupta S., Vyas S.P. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci. Pharm. 2010; 78: 959-76. doi: 10.3797/scipharm.1001-06

22. Li H., Liu Y., Zhang Y., et al. Liposomes as a novel ocular delivery system for brinzolamide: in vitro and in vivo studies. AAPS Pharm. Sci. Tech. 2016; 17 (3): 710–7. doi:10.1208/s12249-015-0382-1

23. Huang Y., Tao Q., Hou D. A novel ion-exchange carrier based upon liposomeencapsulated montmorillonite for ophthalmic delivery of betaxolol hydrochloride. Int. J. Nanomedicine. 2017; 12: 1731–45. doi: 10.2147/IJN.S122747

24. Natarajan J.V., Ang M., Darwitan A., et al. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int. J. Nanomedicine. 2012; 7: 123–31. doi: 10.2147/IJN.S25468

25. Mokhtar Ibrahim M., Tawfique S.A., Mahdy M.M. Liposomal diltiazem HCl as ocular drug delivery system for glaucoma. Drug Dev. Ind. Pharm. 2014; 40 (6): 765–73. doi: 10.3109/03639045.2013.783589

26. Kouchak M., Malekahmadi M., Bavarsad N., et al. Dorzolamide nanoliposome as a long action ophthalmic delivery system in open angle glaucoma and ocular hypertension patients. Drug Dev. Ind. Pharm. 2018; 44 (8): 1239–42. doi: 10.1080/03639045.2017.1386196

27. Hasan A.A. Design and in vitro characterization of small unilamellar niosomes as ophthalmic carrier of dorzolamide hydrochloride. Pharm. Dev. Technol. 2014; 19 (6): 748–75. doi: 10.3109/10837450.2013.829095

28. Hashemi Dehaghi M., Haeri A., Keshvari H. Dorzolamide loaded niosomal vesicles: comparison of passive and remote loading methods. Iran J. Pharm. Res. 2017; 16 (2): 413–22. https://www.ncbi.nlm.nih.gov/pubmed/28979296

29. Huang J., Peng T., Li Y., et al. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS Pharm. Sci. Tech. 2017; 18 (8): 2919–26. doi: 10.1208/s12249-017-0763-8

30. Li C.C., Abrahamson M., Kapoor Y., Chauhan A. Timolol transport from microemulsions trapped in HEMA gels. J. Colloid Interface Sci. 2007; 315 (1): 297–306. doi:10.1016/j.jcis.2007.06.054

31. Morsi N., Ibrahim M., Refai H., El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur. J. Pharm. Sci. 2017; 104: 302–14. doi: 10.1016/j.ejps.2017.04.013

32. Lallemand F., Daull P., Benita S., et al. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J. Drug Deliv. 2012; 2012: 604204. doi: 10.1155/2012/604204

33. Ammar H.O., Salama H.A., Ghorab M., Mahmoud A.A. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS Pharm. Sci. Tech. 2009; 10 (3): 808–19. doi: 10.1208/s12249-009-9268-4

34. Shokry M., Hathout R.M., Mansour S. Exploring gelatin nanoparticles as novel nanocarriers for timolol maleate: Augmented in-vivo efficacy and safe histological profile. Int. J. Pharm. 2018; 545 (1–2): 229–39. doi: 10.1016/j.ijpharm.2018.04.059

35. El-Salamouni N.S., Farid R.M., El-Kamel A.H., El-Gamal S.S. Nanostructured lipid carriers for intraocular brimonidine localisation: development, in vitro and in vivo evaluation. J. Microencapsul. 2018; 35 (1): 102–13. doi: 10.1080/02652048.2018.1425753

36. Ilka R., Mohseni M., Kianirad M., et al. Nanogel-based natural polymers as smart carriers for the controlled delivery of timolol maleate through the cornea for glaucoma. Int. J. Biol. Macromol. 2018; 109: 955–62. doi: 10.1016/j.ijbiomac.2017.11.090

37. Ikuta Y., Aoyagi S., Tanaka Y. Creation of nano eye-drops and effective drug delivery to the interior of the eye. Sci. Rep. 2017; 7: 44229. doi: 10.1038/srep44229

38. Park C.G., Kim Y.K., Kim S.N., et al. Enhanced ocular efficacy of topicallydelivered dorzolamide with nanostructured mucoadhesive microparticles. Int. J. Pharm. 2017; 522 (1–2): 66–73. doi: 10.1016/j.ijpharm.2017.02.035

39. Afify EAMR., Elsayed I., Gad M.K., et al. Enhancement of pharmacokinetic and pharmacological behavior of ocular dorzolamide after factorial optimization of self-assembled nanostructures. PLoS One. 2018; 13 (2): e0191415. doi: 10.1371/journal.pone.0191415

40. Lambert W.S., Carlson B.J., van der Ende A.E., et al. Nanosponge-mediated drug delivery lowers intraocular pressure. Transl. Vis. Sci. Technol. 2015; 4 (1): 1. doi:10.1167/tvst.4.1.1

41. Chan H.H., Wong T.T., Lamoureux E., et al. A survey on the preference of sustained glaucoma drug delivery systems by Singaporean Chinese patients: a comparison between subconjunctival, intracameral, and punctal plug routes. J. Glaucoma. 2015; 24 (7): 485–92. doi: 10.1097/IJG.0000000000000197

42. Varadaraj V., Kahook M.Y., Ramulu P.Y., Pitha I.F. Patient acceptance of sustained glaucoma treatment strategies. J. Glaucoma. 2018; 27 (4): 328–35. doi: 10.1097/IJG.0000000000000913

43. Ozdemir S., Wong T.T., Allingham R.R., Finkelstein E.A. Predicted patient demand for a new delivery system for glaucoma medicine. Medicine (Baltimore). 2017; 96 (15): e6626. doi: 10.1097/MD.0000000000006626


Для цитирования:


Киселева О.А., Бессмертный А.М., Якубова Л.В. Новые технологии доставки гипотензивных препаратов в лечении глаукомы. Российский офтальмологический журнал. 2018;11(4):103-107. https://doi.org/10.21516/2072-0076-2018-11-4-103-107

For citation:


Kiseleva O.A., Bessmertny A.M., Yakubova L.V. New technologies of hypotensive drug delivery in glaucoma treatment. Russian Ophthalmological Journal. 2018;11(4):103-107. (In Russ.) https://doi.org/10.21516/2072-0076-2018-11-4-103-107

Просмотров: 80


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)