Advantages of dynamic bi-directional applanation tonometry in primary open-angle glaucoma diagnostics
https://doi.org/10.21516/2072-0076-2019-12-2-12-17
Abstract
Purpose. To study tonometry parameters features, measured by different methods, taking into account individual morphometric eye parameters and biomechanical properties of the corneoscleral shell in patients with the initial and the advanced stages of primary open angle glaucoma (POAG).
Material and methods. 51 patients (99 eyes) aged 48–82, with the initial (45 eyes) and advanced stages (54 eyes) of POAG were examined. The control group consisted of 31 patients (62 eyes) aged 47–83 without ophthalmic pathology. In addition to standard ophthalmologic examination, tonometry was performed using the Ocular Response Analyzer (ORA, Reichert Inc., the USA).
Results. The main tonometry parameters of ORA revealed significant differences between POAG patients and the control group. No significant difference in the central corneal thickness (CCT) was found between the POAG and the control group. Patients with I and II stages of glaucoma taken separately showed differences in CCT and tonometry parameters.
Conclusion. Dynamic bi-directional applanation tonometry enables to take into account the changes in viscoelastic properties of the corneoscleral eye shell, and definitely has diagnostic advantages in examining patients with various stages of POAG.
About the Authors
A. Sh. ZagidullinaRussian Federation
Cand. Med. Sci., associate professor, department of ophthalmology
3, Lenin St., Ufa, 450008
B. M. Aznabaev
Russian Federation
Dr. Med. Sci., Professor, head of the department of ophthalmology
3, Lenin St., Ufa, 450008
8, 50 let SSSR St., Ufa, 450059
I. A. Lakman
Russian Federation
Cand. Tech. Sci., associate professor, department of computational mathematics and cybernetics
12, K. Marx St., Ufa, 450007
R. R. Islamova
Russian Federation
postgraduate student, department of computational mathematics and cybernetics
12, K. Marx St., Ufa, 450007
R. R. Sattarova
Russian Federation
îphthalmologist
8, 50 let SSSR St., Ufa, 450059
References
1. Volkov V.V. Open angle glaucoma. Moscow: MIA; 2008 (in Russian).
2. Erichev V.P. The pathogenesis, diagnosis, and treatment of primary open-angle glaucoma. Rossijskij medicinskij zhurnal. 1998; 4: 35–8 (in Russian).
3. Nesterov A.P. Pathogenesis and problems of the pathogenetic treatment of glaucoma. Klinicheskaya oftal'mologiya. 2003; 4 (2): 47–9 (in Russian).
4. Krasnov M.M. About target intraocular pressure. Klinicheskaya oftal'mologiya. 2003; 4 (2): 49–51 (in Russian)
5. Iester M., Mete M., Figus M., Frezzotti P. Incorporating corneal pachymetry into the management of glaucoma. J. Cataract Refract. Surg. 2009; 35 (9): 1623–8. doi: 10.1016/j.jcrs.2009.05.015
6. Brandt J. Central corneal thickness, tonometry, and glaucoma risk –a guide for the perplexed. Can. J. Ophthalmol. 2007; 42 (4): 562–6. doi:10.3129/can j ophthalmol.i07-095
7. Brandt J.D., Gordon M.O., Beiser J.A., et al. Ocular Hypertension Treatment Study Group. Changes in central corneal thickness over time. The ocular hypertension treatment study. Ophthalmology. 2008; 115 (9): 1550–6. doi: 10.1016/j.ophtha.2008.02.001
8. Deol M., Taylor D.A., Radcliffe N.M. Corneal hysteresis and its relevance to glaucoma. Cur. Opin. Ophthalmol. 2015; 26 (2): 96–102. doi:10.1097/ICU.0000000000000130
9. Sullivan-Mee M., Billingsley S.C., Patel A.D., et al. Ocular Response Analyzer in subjects with and without glaucoma. Optom. Vis. Sci. 2008; 85 (6): 463–70. doi: 10.1097/OPX.0b013e3181784673
10. Johnson C.S., Mian S.I., Moroi S., et al. Role of corneal elasticity in damping of intraocular pressure. Invest. Ophthalmol. Vis. Sci. 2007; 48 (6): 2540–4. doi: 10.1167/iovs.06-0719
11. Egorov E.A., Vasina M.V. The importance of studying the biomechanical properties of the cornea in the assessment of the ophthalmotonus. RMZh “Klinicheskaja Oftal'mologija”. 2008; 1: 1–3 (in Russian).
12. Arutyunyan L.L. The relationship between the structural and functional parameters and the level of sclera collagen crosslinking of the glaucoma eyes. Nacional'nyj zhurnal glaucoma. 2015; 14 (4): 5–12 (in Russian).
13. Zhuravleva A.N., Andreeva L.D., Neroev V.V. Collagen theory of aging and genetic code in the pathogenesis of glaucoma. Klinicheskaja gerontologija. 2009; 15 (8–9): 78 (in Russian).
14. Arutyunyan L.L. Role of the eye biomechanical properties in determination of target pressure. Glaukoma. 2007; 6 (3): 60–7 (in Russian).
15. Iomdina E.N., Arutunyan L.L., Katargina L.A., Kiseleva O.A., Filippova O.M. Interrelation between corneal hysteresis and structural functional parameters of the optic nerve in different stages of primary open angle glaucoma. Russian ophthalmological journal. 2009; 2 (3): 17–23 (in Russian).
16. Burgoyne C.F., Downs J.C., Bellezza A.J., Suh J.K., Hart R.T. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005; 24 (1): 39–73. doi:10.1016/j.preteyeres.2004.06.001
17. Sigal I.A., Flanagan J.G., Ethier C.R. Factors influencing optic nerve head biomechanics. Invest. Ophthalmol. Vis. Sci. 2005; 46(11): 4189–99. doi:10.1167/iovs.05-0541
18. Sullivan-Mee M., Billingsley S.C., Patel A.D., et al. Ocular Response Analyzer in subjects with and without glaucoma. Optom. Vis. Sci. 2008; 85 (6): 463–70.
19. Detry-Morel M., Jamart J., Pourjavan S. Evaluation of corneal biomechanical properties with the Reichert Ocular Response Analyzer. Eur. J. Ophthalmol. 2011; 21 (2): 138–48. https://www.ncbi.nlm.nih.gov/pubmed/20853262
20. Abitbol O., Bouden J., Doan S., Hoang-Xuan T., Gatinel D. Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes. Acta Ophthalmol. 2010; 88 (1): 116–9. doi: 10.1111/j.1755-3768.2009.01554.x
21. Mangouritsas G., Morphis G., Mourtzoukos S., Feretis E. Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol. 2009; 87 (8): 901–5. doi: 10.1111/j.1755-3768.2008.01370.x
22. Kamiya K., Hagishima M., Fujimura F., Shimizu K. Factors affecting corneal hysteresis in normal eyes. Graefes Arch. Clin. Exp. Ophthalmol. 2008; 246: 1491–4. doi: 10.1007/s00417-008-0864-x
23. Touboul D., Roberts C., Kerautret J., et al. Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J. Cataract Refract. Surg. 2008; 34 (4): 616–22. doi: 10.1016/j.jcrs.2007.11.051
24. Broman A.T., Congdon N.G., Bandeen-Roche K., Quigley H.A. Influence of corneal structure, corneal responsiveness, and other ocular parameters on tonometric measurement of intraocular pressure. J. Glaucoma. 2007; 16 (7): 581–8. doi:10.1097/IJG.0b013e3180640f40
25. Kurysheva N.I., Parshunina O.A., Shatalova E.O., et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Cur. Eye Res. 2016; 3683: 1–7. doi: 10.1080/02713683.2016.1184281
26. Shin J., Lee J.W., Kim E.A., Caprioli J. The effect of corneal biomechanical properties on rebound tonometer in patients with normal-tension glaucoma. Am. J. Ophthalmol. 2015; 159 (1): 144–54. doi: 10.1016/j.ajo.2014.10.007
27. Pillunat K.R., Hermann C., Spoerl E., Pillunat L.E. Analyzing biomechanical parameters of the cornea with glaucoma severity in open-angle glaucoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016; 254 (7): 1345–51. doi: 10.1007/s00417-016-3365-3
28. Gaspar R., Pinto L.A., Sousa D.C. Corneal properties and glaucoma: a review of the literature and meta-analysis. Arq. Bras. Oftalmol. 2017; 80 (3): 202–6. doi: 10.5935/0004-2749.20170050
29. Costin B.R., Fleming G.P., Weber P.A., Mahmoud A.M., Roberts C.J. Corneal biomechanical properties affect Goldmann applanation tonometry in primary open-angle glaucoma. J. Glaucoma. 2014; 23 (2): 69–74. doi: 10.1097/IJG.0b013e318269804b.
Review
For citations:
Zagidullina A.Sh., Aznabaev B.M., Lakman I.A., Islamova R.R., Sattarova R.R. Advantages of dynamic bi-directional applanation tonometry in primary open-angle glaucoma diagnostics. Russian Ophthalmological Journal. 2019;12(2):12-17. (In Russ.) https://doi.org/10.21516/2072-0076-2019-12-2-12-17