Preview

Russian Ophthalmological Journal

Advanced search

The state and dynamics of the wavefront of the eye in children with different refractions engaged in regular sport activities (badminton)

https://doi.org/10.21516/2072-0076-2019-12-2-49-58

Abstract

The paper is aimed at comparing the level of aberrations, structure of the wavefront, and its response to cycloplegia in children with different refractions before they started practicing badminton regularly and after a year’s duration of this practice.

Material and methods. 40 children (80 eyes) with refractive errors from +6.63 to -6.75 D (average -1.28 ± 2.28 D) aged 7 to 11 years (average 9.24 ± 1.06 years) were examined before the practice, 6 months after practice start (38 children, 72 eyes) and after 1 year of badminton playing (27 children, 54 eyes). All patients underwent wavefront aberrometry before and after cycloplegia on an OPD-Scan III (Nidek) aberrometer. We analyzed Zernike coefficients up to the 12th order inclusive: vertical and horizontal slope (tilt 1, tilt 2), vertical and horizontal trefoil (trefoil 6, trefoil 9), vertical and horizontal coma (coma 7, coma 8), spherical aberration (SA), mean square deviation from the ideal wavefront (RMS).

Results. SA in myopia was found to be negative, in hyperopia positive; tilt 1, tilt 2, trefoil 9, coma 7 in myopia were significantly higher, and coma 8 significantly lower than in hyperopia. The slope of the wavefront (tilt 1, tilt 2) in cycloplegia falls significantly in hyperopic eyes and does not change in myopic ones. The latter fact points to insufficient tension of Zinn ligaments in the myopic eye. Regular badminton practice results in significant changes in wavefront aberrations, indicating a strengthening of the ligaments of the lens and the normalization of the ciliary muscle tone.

Conclusions. The structure of the wavefront in children with different refractions shows significant differences. Badminton helps strengthen the ligaments of the lens.

About the Authors

E. P. Tarutta
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., Professor, head, department of refractive pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., 105062, Moscow

 



N. A. Tarasova
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Cand. Med. Sci., senior researcher, department of refractive pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., 105062, Moscow 



G. A. Markossian
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., leading researcher, department of refractive pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., 105062, Moscow 



N. V. Khodzhabekyan
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Cand. Med. Sci., leading researcher, department of refractive pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., 105062, Moscow 



S. G. Harutyunyan
Moscow Helmholtz Research Institute of Eye Diseases; Moscow Evdokimov State Medical Stomatological University, Faculty of Postgraduate Education
Russian Federation

Cand. Med. Sci., ophthalmologist1, senior research assistant

14/19, Sadovaya-Chernogryazskaya St., 105062, Moscow 

20, Bldg. 1, Delegatskaya St., 127473, Moscow



S. Georgiev
I.M.Sechenov First Moscow State Medical University
Russian Federation

student

8/2, Trubetskaya st., Moscow,119991





References

1. Katargina L.A., Tarutta E.P. Medical-social significance of the disorders of accommodation: Accommodation: a guide for physicians. Moscow: Aprel; 2012: 9–12 (in Russian).

2. Jonas J.B., Xu L., Wei W.B., Wang Y.X., et al. Myopia in China: a population-based cross-sectional, histological, and experimental study. Lancet. 2016; 388 (Oct. Suppl 1): S 20. doi: 10.1016/S0140-6736(16)31947-X

3. Matamoros E., Ingrand P., Pelen F., et al. Prevalence of myopia in France: a cross-sectional analysis. Medicine. 2015; 94 (45 November). doi: 0.1097/MD.0000000000001976

4. McCullought S.J., O’Donoghue L., Saunders K.J. Six year refractive change among white children and young adults: evidence for significant increase in myopia among white UK Children. PLoS ONE. 2016; 11(1): e0146332. https://doi.org/10.1371/journal.pone.0146332

5. Williams K.M., Verhoeven V.J.M., Cumberland P., et al. Prevalence of refractive error in Europe: the European Eye Epidemiology (E3) Consortium. Eur. J. Epidemiol. 2015; 30 (4): 305–15. doi: 10.1007/s10654-015-0010-0

6. Dashevsky A.I. New methods of studying the optical system of the eye and the development of its refraction. Kiev; 1956 (in Russian).

7. Yastrebtseva T.A., Chuprov A.D., Plotnikova Yu.A. Indicators of general, cerebral and regional hemodynamics in schoolchildren 13–15 years with myopia. Vestnik oftal’mologii. 2002; 5: 12–5 (in Russian).

8. Theagarayan B., Radhakrishnan H., Allen P.M., Сalver R.I., Rae S.M. The effect of altering spherical aberration on the static accommodative response. Ophthal. Physiol. Opt. 2009; 29 (1): 65–71. doi.org/10.1111/j.1475-1313.2008.00610.x

9. Allen P.M., Radhakrishnan H., Rae S., Calver R.I., Theagarayan B.P. Aberration control and vision training as an effective means of improving accommodation in individuals with myopia. Invest. Ophthalmol. Vis. Sci. 2009; 50: 5120–9. doi: 10.1167/iovs.08-2865

10. Collins M.J., Wildsoet C.F. Optical treatment method. Australia: Queensland University of technology. Brisbane (Australia); 2000.

11. Buehren T., Collins M.J. Accommodation stimulus-response function and retinal image quality. Vision Research. 2006; 46 (10): 1633–45. doi.org/10.1016/j.visres.2005.06.009

12. Zhang N., Yang X., Zhang W., Liu L., Dong G. Relationship between higher-order aberrations and myopia progression in schoolchildren. A retrospective study. Int. J. Ophthalmol. 2013 18; 6 (3): 295–9. doi: 10.3980/j.issn.2222-3959.2013.03.07

13. He J.C., Sun P., Held R., et al. Wave-front aberrations in eyes of emmetropic and moderately myopic schoolchildren and young adults. Vis. Res. 2002; 42: 1063–70. doi.org/10.1016/S0042-6989(02)00035-4

14. Zadok D., Levy Y., Segal O., et al. Ocular higher-order aberrations in myopia and skiascopic wavefront repeatability. J. Cataract. Refract. Surg. 2005; 31 (June): 1128–32. doi.org/10.1016/j.jcrs.2004.10.075

15. Kirwan C., O’Keffe M., Soeldner H. Higher-order aberrations in children. Am. J. Ophthalmol. 2006; 141 (1 Jan.): 67–70. doi. org/10.1016/j.ajo.2005.08.031

16. Philip K., Sankaridurg P., Holden B., Ho A., Mitchell P. Influence of higher-order aberrations and retinal image quality in myopisation of emmetropic eyes. Vision Research. 2014; 105: 233–43.

17. Hartwig A., Atchison D. A., Radhakrishnan H. Higher-order aberrations and anisometropia. Curr. Eye Res. 2013; 38 (1): 215–29. doi: 10.3341/kjo.2014.28.1.66

18. Paquin M. P., Hamam H., Simonet P. Objective measurement of optical aberrations in myopic eyes. Optometry and Vision Science. 2002; 79: 285–91.

19. He Ji.C., Sun P., Held R., Thorn F. Wavefront aberrations in eyes of emmetropic and moderately myopics schoolchildren and young adults. Vis. Research. 2002; 42: 1063–1070. doi.org/10.1016/S0042-6989(02)00035-4

20. Kwan W.C., Yip S.P., Yap M.K. Monochromatic aberrations of the human eye and myopia. Clinical and Experimental Optometry. 2009: 92 (3): 304–12. doi:10.1111/j.1444-0938.2009.00378.x

21. Carkeet A., Luo H.D., Tong L., Saw S.M., Tan D. Refractive error and monochromatic aberrations in Singaporean children. Vision Research. 2002; 42 (14): 1809–24. doi.org/10.1016/S0042-6989(02)00114-1

22. Marcos S., Barbero S., Llorente L. The sources of optical aberrations in myopic eyes. Invest. Ophthalmol. Vis. Sci. 2002; 43 (13 Dec.): 1510.

23. Martinez A. A., Sankaridurg P. R., Naduvilath T. J., Mitchell P. Monochromatic aberrations in hyperopic and emmetropic children. Journal of Vision. 2009; 9 (1): 21–14. doi: 10.1167/9.1.23

24. Thapa D., Fleck A., Lakshminarayanan V., Bobier W.R. Ocular wavefront aberration and refractive error in pre-school children. Journal of Modern Optics. 2011 Nov; 58 (19–20): 1681–19. doi: 10.1080/09500340.2011.564316

25. Atchison D.A., Lucas S.D., Ashman R., et al. Refraction and aberration across the horizontal central 10 degrees of the visual field. Optom. Vis Sci. 2006 Apr; 83 (4): 213–21. doi:10.1097/01.opx.0000214382.75847.c4

26. Cheng H., Barnett J.K., Vilupuru A.S., et al. A population study on changes in wave aberrations with accommodation. J. Vis. 2004; 4: 272–80. https://doi.org/10.1167/4.4.3

27. Bao J., Le R., Wu J., et al. Higher-order wavefront aberrations for populations of young emmetropes and myopes. J. Optom. 2009; 2 (1): 51–8. doi: 10.3921/joptom.2009.51

28. Porter J., Guirao A., Cox I.G., Williams D.R. The human eye's monochromatic aberrations in a large population. J. Opt. Soc. Am. 2001; A18: 1793–803. doi.org/10.1364/JOSAA.18.001793

29. Gilmartin B. A review of the role of sympathetic innervations of the ciliary muscle in ocular accommodation. Ophthalmic. Physiol. Opt. 1986; 6 (1): 23–37.

30. He J.C., Burns S.A., Marcos S. Monochromatic aberrations in the accommodated human eye. Vision Res. 2000; 40 (1): 41–8. doi.org/10.1016/S0042-6989(99)00156-X

31. Hiraoka T., Miyata K., Nakamura Y., et al. Influences of cycloplegia with topical atropine on ocular higher-order aberrations. Ophthalmology. 2013; 120 (1): 8–13. doi: 10.1016/j.ophtha.2012.07.057

32. Carkeet A., Velaedan S., Tan Y.K., Lee D.Y., Tan D.T. Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation. J. Refract. Surg. 2003; 19 (3): 316–20. doi.org/10.3928/1081-597X-20030501-08

33. Tarutta E.P., Arutyunyan S.G., Smirnova T.S. Wavefront aberrations in children with myopia and hyperopia before and after cycloplegia. Russian ophthalmological journal. 2017;10 (3): 78–83(in Russian). https://doi.org/10.21516/2072-0076-2017-10-3-78-83

34. Tarutta E., Khodzhabekyan N., Filinova O., Milash S., Kruzhkova G.Longterm effects of optical defocus on eye growth and refractogenesis. Pomeranian J. Life Sci. 2016; 62 (1): 25–30.

35. Turmanidze V.G., Tarutta E.P., Shakrai S.M. Badminton against myopia. Instructional Manual. Moscow: Kuchkovo Pole Publishers. 2017.


Review

For citations:


Tarutta E.P., Tarasova N.A., Markossian G.A., Khodzhabekyan N.V., Harutyunyan S.G., Georgiev S. The state and dynamics of the wavefront of the eye in children with different refractions engaged in regular sport activities (badminton). Russian Ophthalmological Journal. 2019;12(2):49-58. https://doi.org/10.21516/2072-0076-2019-12-2-49-58

Views: 1165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)