Preview

Russian Ophthalmological Journal

Advanced search

Facilities of diagnosis and monitoring of optic neuropathy in primary open-angle glaucoma. Part 1

https://doi.org/10.21516/2072-0076-2019-12-2-74-82

Abstract

The review is focused on modern methods of instrumental diagnostics of primary open-angle glaucoma. Diagnostic possibilities and informativeness of objective measurable parameters are discussed with regard to special criteria, called clinical endpoints.

About the Authors

O. A. Kiseleva
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., head, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062





N. V. Balatskaya
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Cand. Med. Sci., head, department of immunology and virology

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062 



A. M. Bessmertny
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., senior researcher, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062 



V. I. Kotelin
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Ph.D. student, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062 



References

1. Wostyn P., De Groot V., Van Dam D., et al. The glymphatic hypothesis of glaucoma: a unifying concept incorporating vascular, biomechanical, and biochemical aspects of the disease. Biomed Res. Int. 2017; 29; 2017: 5123148. https://doi.org/10.1155/2017/5123148

2. Downing G. Biomarkers Definitions Working Group. Biomarkers and Surrogate Endpoints. Commentary. Clinical Pharmacology & Therapeutics. 2001; 69 (3): 89. https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1067/mcp.2001.113989

3. Atkinson Jr A.J., Colburn W.A., DeGruttola V.G., et al. Biomarkers Definitions Working Group et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001; 69 (3): 89–95. https://doi.org/10.1067/mcp.2001.113989

4. Lesko L.J., Atkinson Jr A.J. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annual review of pharmacology and toxicology. 2001; 41 (1): 347–66.

5. Lazebnik L.B., Gusein-zade M.G., Efremov L.I. The use of Surrogate and Clinical Endpoints in evaluating the effectiveness of medical interventions. Eksperimental'naja i klinicheskaja gastrojenterologija. 2011; 8: 73–9 (in Russian). Available at: https://cyberleninka.ru/article/n/vybor-surrogatnyh-i-konechnyhtochek-v-otsenke-effektivnosti-meditsinskih-vmeshatelstv

6. Nesterov A.P. Glaucoma optic neuropathy. Vestnik oftal'mologii. 1999; 115 (4): 3–6 (in Russian).

7. Hindle A.G., Thoonen R., Jasien J.V., et al. Identification of Candidate miRNA Biomarkers for Glaucoma. Invest. Ophthalmol. Vis. Sci. 2019; 60 (1): 134–46. doi: 10.1167/iovs.18-24878

8. Hollo G., Hommer A. The status of glaucoma diagnostics and care in Europe in 2015: a European survey. Eur. J. Ophthalmol. 2016; 26 (3): 216–20. doi: 10.5301/ejo.5000699

9. Smith P. The Blood-Pressure in the eye and its relation to the chamber pressure. Brit. J. Ophthalmol. 1923; 7 (10): 449–51.

10. Davanger M., Ringvold A., Blika S., Elsas T. Frequency distribution of IOP: Analysis of a material using the gamma distribution. Acta Ophthalmol. 1991; 69 (5): 561–4.

11. Shields M.B. Normal-tension glaucoma: is it different from primary open-angle glaucoma? Current opinion in ophthalmology. 2008; 19 (2): 85–8. doi: 10.1097/ICU.0b013e3282f3919b

12. Egorov E.A., Vasina M.V. The effect of corneal thickness on the level of intraocular pressure among different groups of patients. Klinicheskaya oftal'mologiya. 2006; 7 (1): 16–9 (in Russian).

13. Avetisov S.E., Bubnova I.A., Antonov A.A. Talking about the normal values of the biomechanical parameters of the fibrous membrane of the eye. Natsional'nyy zhurnal glaukoma. 2012; 3: 5–11 (in Russian).

14. Iomdina E.N., Bauer S.M., Kotlyar K.E. Eye biomechanics: theoretical aspects and clinical applications. Moscow: Real Time; 2015 (in Russian).

15. Oncel B., Dinc U.A., Gorgun E., Ilgaz Yalvac B. Diurnal variation of corneal biomechanics and intraocular pressure in normal subjects. Eur. J. Ophthalmol. 2009; 19 (5): 798–803.

16. Werner E.B., Ritch R., Shields M.B., Krupin T. The Glaucomas. 2nd ed. St. Louis: Mosby-Year Book; Normal-tension glaucoma. 1996.

17. Kass M.A., Heuer D.K., Higginbotham E.J., et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002; 120: 701–13; discussion 829–830.

18. Krupin T., Liebmann J.M., Greenfield D.S., et al. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am. J. Ophthalmol. 2011; 151: 671–81. doi: 10.1016/j.ajo.2010.09.026

19. Balalin S.V., Fokin V.P. Analysis of the effectiveness of modern diagnostic methods for the initial stage of primary glaucoma. Prakticheskaya meditsina. 2012; 1 (4): 59–62 (in Russian).

20. Erichev V.P., Antonov A.A., Kozlova I.V. Objectification of criteria for evaluating the effectiveness of neuroretino-protective glaucoma therapy. Natsional'nyy zhurnal glaukoma. 2018; 17 (3): 50–7 (in Russian). https://doi.org/10.25700/NJG.2018.03.06

21. Kerrigan-Baumrind L.A., Quigley H.A., Pease M.E., Kerrigan D.F., Mitchell R.S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest. Ophthalmol. Vis. Sci. 2000; 41 (3): 741–8.

22. Kurysheva N.I. Perimetry in the diagnosis of glaucomatous optic neuropathy. Moscow: Grinlayt; 2015 (in Russian).

23. Fabrikantov O.L., Shutova S.V., Sukhorukova A.V. Comparative characteristics of standard computer and contour perimetry methods in the diagnosis of initial glaucoma. Oftal'mokhirurgiya. 2016; 4: 24–9 (in Russian). doi: 10.25276/0235-4160-2015-4-24-2

24. Quigley H.A., Dunkelberger G.R., Green W.R. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am. J. Ophthalmol. 1989; 107 (5): 453–64.

25. Keltner J.L., Johnson C.A., Levine R.A., et al. Normal visual field test results following glaucomatous visual field and points in the Ocular Hypertension Treatment Study. Arch. Ophthalmol. 2005; 123 (9): 1201–6. doi:10.1001/archopht.123.9.1201

26. Van der Schoot J., Reus N.J., Colen T.P., Lemij H.G. The ability of short-wavelength automated perimetry to predict conversion to glaucoma. Ophthalmology. 2010; 117 (1): 30–4. doi: 10.1016/j.ophtha.2009.06.046

27. Mitrofanova N.V., Ankudinova S.V., Dautova Z.A., et al. Some aspects of SW perimetry use in clinical practice for glaucoma diagnostics. Meditsinskiy vestnik Bashkortostana. 2014; 9 (2): 66–71 (in Russian).

28. Bengtsson B., Heijl A. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs. Ophthalmology. 2006; 113 (7): 1092–7. doi: 10.1016/j.ophtha.2005.12.028

29. Horn F.K., Mardin C.Y., Bendschneider D. Frequency doubling technique perimetry and spectral domain optical coherence tomography in patients with early glaucoma. Eye. 2011; 25 (1): 17–29. doi: 10.1038/eye.2010.155

30. Pinilla I., Ferreras A., Idoipe M. Changes in frequency-doubling perimetry in patients with type I diabetes prior to retinopathy. Biomed. Res. Int. 2013; 2013: 341269. doi: 10.1155/2013/341269

31. Heijl A., Buchholz P., Norrgren G., Bengtsson B. Rates of visual field progression in clinical glaucoma care. Acta Ophthalmol. 2013; 91 (5): 406–12. doi: 10.1111/j.1755-3768.2012.02492.x

32. Zeppieri M., Brusini P., Parisi L., et al. Pulsar perimetry in the diagnosis of early glaucoma. Am. J. Ophthalmol. 2010; 149 (1): 102–12. doi: 10.1016/j.ajo.2009.07.020

33. Cvenkel B., Kontestabile A.S. Correlation between nerve fibre layer thickness measured with spectral domain OCT and visual field in patients with different stages of glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2011; 249 (4): 575–84. doi: 10.1007/s00417-010-1538-z

34. Egorov E.A., Kurmangalieva M.M., Fedotovskikh G.V. Morphological study of the retina of patients with glaucoma. Klinicheskaya oftal'mologiya. 2004; 5 (2): 54–6 (in Russian).

35. Shamshinova A.M., Yakovleva A.A., Romanova E.V. (eds). Clinical physiology of vision. Moscow: PBOYUL “T.M. Andreeva”; 2002 (in Russian).

36. Tafreshi A., Racette L., Weinreb R.N., et al. Pattern electroretinogram and psychophysical tests of visual function for discriminating between healthy and glaucoma eyes. Am. J. Ophthalmol. 2010; 149 (3): 488–95. doi: 10.1016/j.ajo.2009.09.027

37. Bach M., Poloschek C.M. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013; 353 (2): 287–96. doi: 10.1007/s00441-013-1598-6

38. Bach M. Electrophysiological approaches for early detection of glaucoma. Eur. J. Ophthalmol. 2001; 11 (2): 41–9. PMID:11592530

39. Kaur C., Foulds W.S., Ling E.A. Hypoxia-ischemia and retinal ganglion cell damage. Clin. Ophthalmol., 2008; 2 (4): 879. doi:10.2147/OPTH.S3361

40. Preiser D., Lagreze W.A., Bach M., Poloschek C.M. Photopic negative response versus pattern electroretinogram in early glaucoma. Invest. Ophthalmol. Vis. Sci. 2013; 54 (2): 1182–91. doi: 10.1167/iovs.12-11201.

41. Marmor M.F., Hood D., Keating D., et al. Guidelines for basic multifocal electroretinography (mfERG). Doc. Ophthalmol. 2003; 106: 105–15.

42. Zueva M.V. Fundamental ophthalmology: the role of electrophysiological studies. Vestnik oftal'mologii. 2014; 130 (6): 28–36 (in Russian).

43. Cappin J.M., Nissim S. Visual evoked responses in the assessment of field defects in glaucoma. Arch. Ophthalmol. 1975; 93 (1): 9–18.

44. Essock E.A., Gunvant P., Zheng Y., et al. Predicting visual field loss in ocular hypertensive patients using wavelet-fourier analysis of GDx scanning laser polarimetry. Optom. Vis. Sci. 2007; 84 (5): 380–7. doi: 10.1097/OPX.0b013e318058a0de

45. Klistorner A., Graham S.L. Objective perimetry in glaucoma. Ophthalmology. 2000; 107 (12): 2283–99. PMID:11097611

46. Fortune B., Bearse M.A.Jr., Cioffi G.A., Johnson C.A. Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest. Ophthalmol. Vis. Sci. 2002; 43 (8): 2638–47. Available at: https://iovs.arvojournals.org/article.aspx?articleid=2124274

47. Fortune B., Demirel S., Zhang X., et al. Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Invest. Ophthalmol. Vis. Sci. 2007; 48 (3): 1173–1180. doi: 10.1167/iovs.06-0561

48. Brandao L.M., Monhart M., Schotzau A., Ledolter A.A., PalmowskiWolfe A.M. Wavelet decomposition analysis in the two-flash multifocal ERG in early glaucoma: a comparison to ganglion cell analysis and visual field. Doc. Ophthalmol. 2017; 135 (1): 29–42. doi: 10.1007/s10633-017-9593-y

49. Miglior S., Guareschi M., Albe E., et al. Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. Am. J. Ophthalmol. 2003; 136 (1): 26–33. PMID: 12834666

50. Miglior S., Guareschi M., Romanazzi F., et al. The impact of definition of primary open-angle glaucoma on the cross-sectional assessment of diagnostic validity of Heidelberg retinal tomography. Am. J. Ophthalmol. 2005; 139 (5): 878–87. Available at: 10.1016/j.ajo.2005.01.013

51. Ford B.A., Artes P.H., McCormick T.A., et al. Comparison of data analysis tools for detection of glaucoma with the Heidelberg Retina Tomograph. Ophthalmology. 2003; 110 (6): 1145–50. Available at: 10.1016/S0161-6420(03)00230-6

52. Mardin C.Y., Hothorn T., Peters A., et al. New glaucoma classification method based on standard Heidelberg Retina Tomograph parameters by bagging classification trees. J. Glaucoma. 2003; 12 (4): 340–6. PMID:12897579

53. Zangwill L.M., Chan K., Bowd C., et al. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest. Ophthalmol. Vis. Sci. 2004; 45 (9): 3144–51. doi: 10.1167/iovs.04-0202

54. Swindale N.V., Stjepanovic G., Chin A., Mikelberg F.S. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest. Ophthalmol. Vis. Sci. 2000; 41 (7): 1730–42. Available at: https://iovs.arvojournals.org/article.aspx?articleid=2123111

55. Machekhin V.A., Fabrikantov O.L. Heidelberg Retinotomography of the optic nerve head in the early diagnosis of glaucoma. Vestnik oftal'mologii. 2017; 133 (4): 17–24 (in Russian). doi: 10.17116/oftalma2017133417-24

56. Machekhin V.A. Retinotomographic studies of the normal optic nerve head and glaucoma. Moscow: Oftal'mologiya; 2011 (in Russian).

57. Lumbroso B., Rispoli M. Practical Handbook of OCT. New Delhi: Jaypee Brothers Medical Publishers; 2012.

58. Tatham A.J., Weinreb R.N., Medeiros F.A. Strategies for improving early detection of glaucoma: the combined structure–function index. Clinical ophthalmology. 2014; 8: 611. doi: 10.2147/OPTH.S44586

59. Harwerth R.S., Wheat J.L. Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness. Graefes Arch. Clin. Exp. Ophthalmol. 2008; 246 (2): 305–14.

60. Shpak A.A., Sevost'yanova M.K. Comparative value of Heidelberg retinotomography and spectral optical coherent tomography in the diagnosis of initial glaucoma. Oftal'mokhirurgiya. 2011; 4: 40–4 (in Russian).

61. Kuroedov A.V., Gorodnichiy V.V. Computer retinotomography (HRT): diagnosis, dynamics, reliability. Moscow: Izdatel'skiy tsentr MNTK “Mikrokhirurgiya glaza”; 2007 (in Russian).

62. Kurysheva N.I. Optical coherent tomography in the diagnosis of glaucoma. Moscow: AKSI-M; 2015 (in Russian).

63. Weinreb R.N., Zangwill L.M., Jain S., et al. Predicting the onset of glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to the Ocular Hypertension Treatment Study. Ophthalmology. 2010; 117: 1674–1683. doi: 10.1016/j.ophtha.2010.03.044

64. Zhang X., Dastiridou A., Francis B.A., et al. Baseline Fourierdomain optical coherence tomography structural risk factors for visual field progression in the Advanced Imaging for Glaucoma Study. Am. J. Ophthalmol. 2016; 172: 94–103. doi:10.1016/j.ajo.2016.09.015

65. Medeiros F.A., Lisboa R., Weinreb R.N., et al. A combined index of structure and function for staging glaucomatous damage. Arch. Ophthalmol. 2012; 130 (9): 1107–16. doi:10.1001/archophthalmol.2012.827

66. Rolle T., Briamonte C., Curto D., Grignolo F.M. Ganglion cell complex and retinal nerve fiber layer measured by Fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma. Clin. Ophthalmol. 2011; 5: 961–9. doi: 10.2147/OPTH.S20249

67. Rao H.L., Babu J.G., Addepalli U.K., Senthil S., Garudadri C.S. Retinal nerve fiber layer measured by spectral domain optical coherence tomograph in Indian eyes with early glaucoma. Eye. 2012; 26 (1): 133–9. doi: 10.1038/eye.2011.277


Review

For citations:


Kiseleva O.A., Balatskaya N.V., Bessmertny A.M., Kotelin V.I. Facilities of diagnosis and monitoring of optic neuropathy in primary open-angle glaucoma. Part 1. Russian Ophthalmological Journal. 2019;12(2):74-82. (In Russ.) https://doi.org/10.21516/2072-0076-2019-12-2-74-82

Views: 1200


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)