Preview

Russian Ophthalmological Journal

Advanced search

Micropulse transscleral cyclophotocoagulation for the treatment of glaucoma

https://doi.org/10.21516/2072-0076-2020-13-2-105-111

Abstract

Because of the unpredictable hypotensive effect and serious complications during continuous-wave cyclophotocoagulation (CW-CPC), the use of this method in the treatment of glaucoma is limited. Therefore, a new technique was developed, known as micropulse trans-scleral cyclophotocoagulation (MP-CPC). During MP-CPC, a series of short bursts of laser pulses deliver energy to the ciliary body at the near-infrared wavelength of 810 nm, which is strongly absorbed by melanin. As shown by experimental studies, there are several acting mechanisms which reduce IOP decrease during MP-CPC. In clinical studies, patients with different forms and stages of glaucoma received laser energy of similar parameters during MP-CPC. It may be concluded that MP-CPC is a safe and effective alternative to traditional CW-CPC. However if laser irradiation directed to the ciliary body during MP-CPC gets longer, the incidence of complications increases. The variation of glaucoma forms in patients who underwent MP-CPC and a relatively small number of cases involved in the studies prevent us from making an unambiguous recommendation of this technique at the moment. An extensive research of the technique is required.

About the Authors

N. S. Khodzhaev
S.N. Fyodorov Eye Microsurgery NMRC
Russian Federation

Nazrulla S. Khodzhaev – Dr. of Med. Sci., Professor, deputy general director for organizational work and innovative development

59a, Beskudnikovsky Bulvar, Moscow, 127486



A. V. Sidorova
S.N. Fyodorov Eye Microsurgery NMRC
Russian Federation

Alla V. Sidorova – ophthalmologist, head of glaucoma department

59a, Beskudnikovsky Bulvar, Moscow, 127486



A. V. Starostina
S.N. Fyodorov Eye Microsurgery NMRC
Russian Federation

Anna V. Starostina – Cand. of Med. Sci., junior researcher of glaucoma surgery department

59a, Beskudnikovsky Bulvar, Moscow, 127486



M. A. Eliseeva
S.N. Fyodorov Eye Microsurgery NMRC
Russian Federation

Maria A. Eliseeva – resident

59a, Beskudnikovsky Bulvar, Moscow, 127486



References

1. Egorov E.A. National guidelines for glaucoma. 3d edition. Moscow: GEOTAR-Media; 2013: 44–62 (in Russian).

2. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006; 90 (3): 262–7. doi:10.1136/bjo.2005.081224

3. Nesterov A.P., Egorov E.A., Egorov A.E., Kats D.V. Influence of transscleral laser cyclophotocoagulation on interocular pressure and visual function in patients with open-angle advanced glaucoma. Vestnik oftal’mologii. 2001; 1: 3–4 (in Russian).

4. Chuprov A.D., Gavrilova I.A. Efficiency analysis of different organ-preserving operations with terminal painful glaucoma. RMZh. 2010; 12 (4): 135–6 (in Russian).

5. Egorova E.V., Sokolovskaja T.V., Uzunjan D.G., Drobnica A.A. Parameter calculation of contact transscleral diode-laser cyclophotocoagulation with the changes of ciliary body during exploration by the method of ultrasound biomicroscopy in patients with terminal glaucoma. Oftal'mokhirurgija. 2013; 3: 72–7 (in Russian).

6. Drobysheva I.S. Our experience in the treatment of refractory terminal glaucoma. Vestnik TGU. 2016; 21 (4): 1525–8 (in Russian). doi: 10.20310/1810-0198-2016-21-4-15251528

7. Gavrilova I.A., Plotnikova Ju.A., Chuprov A.D. Application experience of transscleral diode laser cyclophotocoagulation on eyes with preserved visual functions. Tochka zrenija: Vostok — Zapad. 2014; 2: 31 (in Russian). Available at: https://eyepress.ru/article.aspx?15112

8. Kramp K., Vick H., Guthoff R. Transscleral diode laser contact cyclophotocoagulation in the treatment of different glaucomas, also as primary surgery. Graefes. Arch. Clin. Exp. Ophthalmol. 2002; 204: 698–703. doi: 10.1007/s00417-002-0508-5

9. Ness P.J., Khaimi M.A., Feldman R.M., et al. Intermediate term safety and efficacy of transscleral cyclophotocoagulation after tube shunt failure. J. Glaucoma. 2012; 21 (2): 83–8. doi: 10.1097/IJG.0b013e31820bd1ce

10. Bojko E.V., Kulikov A.N., Skvorcov V.Ju. Comparative evaluation of diode laser thermotherapy and lasercoagulation as a method of cyclodestruction (experimental study). Prakticheskaja meditsina. Oftal'mologija. 2012; 1: 175–9 (in Russian).

11. Frezzotti P., Mittica V., Martone G., et al. Long term follow-up of diode laser transscleral cyclophotocoagulation in the treatment of refractory glaucoma. Acta. Ophthalmol. 2010; 88 (1): 150–5. doi: 10.1111/j.1755-3768.2008.01354.x

12. Pastor S.A., Singh K., Lee D.A., et al. Cyclophotocoagulation: a report by the American Academy of Ophthalmology. Ophthalmology. 2001; 108 (11): 2130–8. doi: 10.1016/s0161-6420(01)00889-2

13. Iliev M.E., Gerber S. Long-term outcome of trans-scleral diode laser cyclophotocoagulation in refractory glaucoma. Br. J. Ophthalmol. 2007; 91: 1631–5. doi: 10.1136/bjo.2007.116533

14. Ishida K. Update on results and complications of cyclophotocoagulation. Curr. Opin. Ophthalmol. 2013; 24 (2): 102–10. doi:10.1097/ICU.0b013e32835d9335

15. Ramli N., Htoon H.M., Ho C.L., Aung T., Perera S. Risk factors for hypotony after trans-scleral diode cyclophotocoagulation. J. Glaucoma. 2012; 21 (3): 169–73. doi: 10.1097/IJG.0b013e318207091a

16. Pantcheva M.B., Kahook M.Y., Schuman J.S., Noecker R.J. Comparison of acute structural and histopathological changes in human autopsy eyes after endoscopic cyclophotocoagulation and trans-scleral cyclophotocoagulation. Br. J. Ophthalmol. 2007; 91 (2): 248–52. doi:10.1136/bjo.2006.103580

17. Kuchar S., Moster M.R., Reamer C.B., Waisbourd M. Treatment outcomes of micropulse trans-scleral cyclophotocoagulation in advanced glaucoma. Lasers Med. Sci. 2016; 31 (2): 393–6. doi: 10.1007/s10103-015-1856-9

18. Ndulue J.K., Rahmatnejad K., Sanvicente C., Wizov S.S., Moster M.R. Evolution of cyclophotocoagulation. J. Ophthalmic. Vis. Res. 2018 Jan-Mar; 13 (1): 55–61. doi:10.4103/jovr.jovr_190_17

19. Noecker R.J. The benefits of micropulse TSCPC for early-stage glaucoma. Ophtalmol. Times Eur. 2017: 30–2.

20. Tan A.M., Chockalingam M., Aquino M.C., et al. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin. Exp. Ophthalmol. 2010; 38 (3): 266–72. doi: 10.1111/j.1442-9071.2010.02238.x

21. Williams A.L., Moster M.R., Rahmatnejad K., et al. Clinical efficacy and safety profile of micropulse trans-scleral cyclophotocoagulation in refractory glaucoma. J. Glaucoma. 2018; 27 (5): 445–9. doi: 10.1097/IJG.0000000000000934

22. Fea A.M., Bosone A., Rolle T., et al. Micropulse diode laser trabeculoplasty (MDLT): A phase II clinical study with 12 months follow-up. Clin. Ophthalmol. 2008; 2: 247–52. doi: 10.2147/opth.s2303

23. Fudemberg S.J., Myers J.S., Katz L.J. Trabecular meshwork tissue examination with scanning electron microscopy: A comparison of micropulse diode Laser (MLT), selective laser (SLT), and argon laser (ALT) trabeculoplasty in human cadaver tissue. Invest. Ophthalmol. Vis. Sci. May 2008; 49: 1236. Available at: https://iovs.arvojournals.org/article.aspx?articleid=2376690

24. Emerick G.T. Highlights of the AGS annual meeting. Glaucoma today. 2016; 14 (2): 40–2. Available at http://glaucomatoday.com/pdfs/gt0316_rsrch.pdf

25. Sanchez F.G., Peirano-Bonomi J.C., Grippo T.M. Micropulse transscleral cyclophotocoagulation: a hypothesis for the ideal parameters. Med. Hypothesis Discov. Innov. Ophthalmol. 2018; 7 (3 Fall): 94-100. PMCID:PMC6205680

26. Emanuel M.E., Grover D.S., Fellman R.L., et al. Micropulse cyclophotocoagulation: initial results in refractory glaucoma. J. Glaucoma. 2017; 26 (8): 726–9. doi: 10.1097/IJG.0000000000000715

27. Eliseeva M.A., Khodzhaev N.S., Sidorova A.V., Starostina A.V. Micropulse transscleral cyclophotocoagulation in combined surgical treatment of refractory glaucoma. Sovremennye tekhnologii v oftal'mologii. 2019; 4: 95–8. (in Russian) doi.org/10.25276/23124911-2019-4-95-98

28. Aquino M.C., Barton K., Tan A.M., et al. Micropulse versus continuous wave trans-scleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin. Exp. Ophthalmol. 2015; 43 (1): 40–6. doi: 10.1111/ceo.12360

29. Gavris M.M., Olteanu I., Kantor E., Mateescu R., Belicioiu R. IRIDEX MicroPulse P3: innovative cyclophotocoagulation. Rom. J. Ophthalmol. 2017; 61 (2): 107–11. doi: 10.22336/rjo.2017.20

30. Lee J.H., Shi Y., Amoozgar B., et al. Outcomes of micropulse laser transscleral cyclophotocoagulation on pediatric versus adult glaucoma patients. J. Glaucoma. 2017; 26 (10): 936–9. doi: 10.1097/IJG.0000000000000757

31. Sanchez F.G., Lerner F., Sampaolesi J., et al. Efficacy and safety of micropulse transscleral cyclophotocoagulation in glaucoma. Arch. Soc. Esp. Oftalmol. 2018; 93 (12): 573–9. doi: 10.1016/j.oftale.2018.08.006

32. Sarrafpour S., Saleh D., Ayoub S., Radcliffe N.M. Micropulse transscleral cyclophotocoagulation: A look at long-term effectiveness and outcomes. Ophthalmology Glaucoma. 2019; 2 (Issue 3 May-June): 167–71. doi: 10.1016/j.ogla.2019.02.002

33. Toyos М.М., Toyos R. Clinical outcomes of micropulsed trans-scleral cyclophotocoagulation in moderate to severe glaucoma. J. Clin. Exp. Ophtalmol. 2016; 7: 620. doi: 10.4172/2155-9570.1000620

34. Zaarour K., Abdelmassih Y., Arej N., et al. Outcomes of micropulse trans-scleral cyclophotocoagulation in uncontrolled glaucoma patients. J. Glaucoma. 2019; 28 (3): 270–5. doi: 10.1097/IJG.0000000000001174

35. Yelenskiy A., Gillette T.B., Arosemena A., et al. Patient outcomes following micropulse trans-scleral cyclophotocoagulation: intermediate-term results. J. Glaucoma. 2018; 27 (10): 920–5. doi: 10.1097/IJG.0000000000001023

36. Nguyen A.T., Maslin J.S., Noecker J.R. Early results of micropulse trans-scleral cyclophotocoagulation for the treatment of glaucoma. Eur. J. Ophtalmol. 2019: 303. doi: 10.1177/1120672119839303


Review

For citations:


Khodzhaev N.S., Sidorova A.V., Starostina A.V., Eliseeva M.A. Micropulse transscleral cyclophotocoagulation for the treatment of glaucoma. Russian Ophthalmological Journal. 2020;13(2):105-111. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-2-105-111

Views: 4756


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)