Preview

Russian Ophthalmological Journal

Advanced search

A comparative study of structural and microcirculatory parameters in patients with primary open-angle glaucoma and diabetes mellitus

https://doi.org/10.21516/2072-0076-2020-13-3-42-50

Abstract

Purpose: to study the structural and microcirculatory changes in the optic nerve and retina in patients with primary open-angle glaucoma (POAG)  in diabetes using OCT  and OCT-A.

Material  and methods. The study involved 156 eyes of 104 patients, divided into 4 groups: group 1 — 47 eyes (26 patients aged 66.96 ± 6.05) with stage I POAG and diabetes, group 2 — 36 eyes (24 patients aged 64.64 ± 7.91) with stage I POAG; group 3 — 36 eyes (28 patients aged 63.03 ± 7.10) with stage III POAG and diabetes; group 4 — 37 eyes (26 patients, aged 69.70 ± 7.44) with stage III POAG. All patients underwent a complete ophthalmologic examination, spectral OCT, OCT-A of the optic disc and the macula.

Results. In groups 1 and 3 (with POAG and diabetes), a decrease in the parameters of best corrected visual acuity and MD was revealed, which became worse as glaucoma progressed. A thinning of retinal nerve fiber layer (RNFL), neuroretinal rim, ganglion cells and inner plexiform layer (GCL  + IPL) was noted, with the lowest values in patients with stage III POAG and diabetes. The analysis of hemodynamics showed a pronounced decrease in perfusion (39.04 ± 3.42 %) as well as vascular density of the optic disc (0.35 ± 0.04 / mm) and the macular area (22.96 ± 5.82 % and 12.19 ± 4.04 / mm) in stage III of POAG and diabetes. This decrease is strongly correlated with functional  and structural changes, the stage of glaucoma and the presence of diabetes.

Conclusion. A comparative  analysis of structural, functional and vascular changes between groups of patients with stage I and III POAG, both accompanied and unaccompanied by diabetes, revealed signs of significant deterioration in perfusion of the optic nerve and retina in patients with diabetes. In combined  glaucoma and diabetes, early diagnosis, monitoring and adequate timely therapy require careful attention of specialists.

About the Authors

A. Zh. Fursova
Novosibirsk State Medical University; Novosibirsk State Regional Clinical Hospital
Russian Federation

Anzhella Zh. Fursova — Dr.  of Med.  Sci.,  head  of ophthalmology department.

52, Krasny Prospect, Novosibirsk, 630091; 130, Nemirovich-Danchenko str, Novosibirsk, 630087



Y. A. Gamza
Novosibirsk State Medical University
Russian Federation

Yuliya A. Gamza — MD, assistant professor of ophthalmology department.

52, Krasny Prospect, Novosibirsk, 630091



M. S. Tarasov
Novosibirsk State Medical University; Novosibirsk State Regional Clinical Hospital
Russian Federation

Mikhail S.  Tarasov — MD, assistant professor  of ophthalmology department.

52, Krasny Prospect, Novosibirsk, 630091; 130, Nemirovich-Danchenko str, Novosibirsk, 630087


M. V. Vasilyeva
Novosibirsk State Regional Clinical Hospital
Russian Federation

Maria A. Vasil’eva — MD.

130, Nemirovich-Danchenko str, Novosibirsk, 630087



A. S. Derbeneva
Novosibirsk State Medical University; Novosibirsk State Regional Clinical Hospital
Russian Federation

Anna S.  Derbeneva — MD, assistant professor  of ophthalmology department.

52, Krasny Prospect, Novosibirsk, 630091; 130, Nemirovich-Danchenko str, Novosibirsk, 630087



References

1. Jia Y., Wei E., Wang X., et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121: 1322–32. doi:10.1016/j.ophtha.2014.01.021

2. Jia Y., Tan O., Tokayer J., et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express. 2012; 20: 4710–25. doi: 10.1364/OE.20.004710

3. Kaiser H.J., Schoetzau A., Stumpfig D., et al. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am. J. Ophthalmol. 1997; 123: 320–7. doi:10.1016/s0002-9394(14)70127-8

4. Marangoni D., Falsini B., Colotto A., et al. Subfoveal choroidal blood flow and central retinal function in early glaucoma. Acta Ophthalmol. (Copenh). 2012; 90: e288–e294. doi: 10.1111/j.1755-3768.2011.02340.x

5. Piltz-Seymour J.R. Laser Doppler flowmetry of the optic nerve head in glaucoma. Surv. Ophthalmol. 1999; 43 (suppl 1): S191–S198

6. Deokule S., Vizzeri G., Boehm A., et al. Association of visual field severity and parapapillary retinal blood flow in open-angle glaucoma. J. Glaucoma. 2010 Jun-Jul; 19 (5): 293–8. doi: 10.1097/IJG.0b013e3181b6e5b9

7. Song B.J., Aiello L.P., Pasquale L.R. Presence and risk factors for glaucoma in patients with diabetes. Curr. Diab. Rep. 2016 December; 16 (12): 124. doi:10.1007/s11892-016-0815-6

8. Takis A., Alonistiotis D., Ioannou N., et al. Follow-up of the retinal nerve fiber layer thickness of diabetic patients type 2, as a predisposing factor for glaucoma compared to normal subjects. Clin. Ophthalmol. 2017 Jun 13; 11: 1135-41. doi: 10.2147/OPTH.S129935

9. Toshev A.P., Schuster A.K., Hassan S.N., et al. Optical Coherence Tomography Angiography of optic disc in eyes with primary open-angle glaucoma and normal-tension glaucoma. J. Glaucoma. 2019 Mar; 28 (3): 243–51. doi: 10.1097/IJG.0000000000001184

10. Yip V.C.H., Wong H.T., Yong V.K.Y., et al. Optical Coherence Tomography Angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J. Glaucoma. 2019 Jan; 28 (1): 80–7. doi: 10.1097/IJG.00000000000101125

11. Penteado R.C., Zangwill L.M., Daga F.B., et al. Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma. J. Glaucoma 2018 Jun; 27 (6): 481–9. doi:10.1097/IJG.0000000000000964

12. Bojikian K.D., Nobrega P., Wen J.C., et al. Macular vascular microcirculation in eyes with open-angle glaucoma using different visual field severity classification systems. J. Glaucoma. 2019 Sep; 28 (9): 790–6. doi: 10.1097/IJG.0000000000001308

13. Moghimi S., Zangwill L.M., Penteado R.C., et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2018 Nov; 125 (11): 1720–8. doi: 10.1016/j.ophtha.2018.05.006

14. Tan O., Chopra V., Lu A.T., et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009; 116: 2305–14. doi: 10.1016/j.ophtha.2009.05.025

15. Kim Y.J., Kang M.H., Cho H.Y., et al. Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn. J. Ophthalmol. 2014 May; 58 (3): 244–51. doi: 10.1007/s10384-014-0315-7

16. Sung K.R., Sun J.H., Na J.H., Lee J.Y., Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012 Feb; 119 (2): 308–13. doi: 10.1016/j.ophtha.2011.08.022

17. Na J.H., Sung K.R., Lee J.R., et al. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Ophthalmology. 2013 Jul; 120 (7): 1388–95. doi: 10.1016/j.ophtha.2012.12.014

18. Spaide F. Measurable aspects of the retinal neurovascular unit in diabetes, glaucoma, and controls. Am. J. Ophthalmol. 2019 Nov; 207: 395–409. doi: 10.1016/j.ajo.2019.04.035

19. Richter G.M., Madi I., Chu Z., et al. Structural and functional associations of macular microcirculation in the ganglion cell-inner plexiform layer in glaucoma using Optical Coherence Tomography Angiography. J. Glaucoma. 2018 Mar; 27 (3): 281–90. doi: 10.1097/IJG.0000000000000888. PMID: 29394201

20. Rao H.L., Pradhan Z.S., Weinreb R.N., et al. Determinants of peripapillary and macular vessel densities measured by Optical Coherence Tomography Angiography in normal eyes. J. Glaucoma. 2017 May; 26 (5): 491–7. doi: 10.1097/IJG.0000000000000655

21. Yarmohammadi A., Zangwill L.M., Manalastas P.I.C., et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018 Apr; 125 (4): 578–87. doi: 10.1016/j.ophtha.2017.10.029

22. Sehi M., Goharian I., Konduru R., et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014 Mar; 121 (3): 750–8. doi: 10.1016/j.ophtha.2013.10.022

23. Suh M.H., Zangwill L.M., Manalastas P.I., et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016; 123:2309–17. doi 10.1016/j.ophtha.2016.07.023

24. Manalastas P.I.C., Zangwill L.M., Daga F.B., et al. The association between macula and ONH Optical Coherence Tomography Angiography (OCT-A) vessel densities in glaucoma, glaucoma suspect, and healthy eyes. J. Glaucoma. 2018 Mar; 27 (3): 227–32. doi: 10.1097/IJG.0000000000000862

25. Rao H.L., Riyazuddin M., Dasari S., et al. Diagnostic abilities of the optical microangiography parameters of the 3 3 mm and 6 6 mm macular scans in glaucoma. J. Glaucoma. 2018 Jun; 27 (6): 496–503. doi: 10.1097/IJG.0000000000000952


Review

For citations:


Fursova A.Zh., Gamza Y.A., Tarasov M.S., Vasilyeva M.V., Derbeneva A.S. A comparative study of structural and microcirculatory parameters in patients with primary open-angle glaucoma and diabetes mellitus. Russian Ophthalmological Journal. 2020;13(3):42-50. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-3-42-50

Views: 784


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)