Electrophysiological markers of advanced stages of glaucomatous optic neuropathy
https://doi.org/10.21516/2072-0076-2021-14-3-19-24
Abstract
Purpose: to determine the changes in electrophysiological parameters reflecting specific dysfunctions of retinal ganglion cells (RGCs) at advanced stages of glaucomatous optic neuropathy (GON).
Material and methods. The study involved 35 patients (55 eyes) aged 51–76 (63.1 ± 7.7 years) with primary open-angle glaucoma (POAG), divided into two subgroups depending on POAG stages: developed (24 patients, 27 eyes) and advanced stages (24 patients, 28 eyes). The age-matched control group (aged 51–72, 59.8 ± 5.9) included 28 relatively healthy individuals (32 eyes). Transient and steady-state pattern ERG (PERG) and photopic negative response (PhNR) were recorded according to ISCEV standards.
Results. A decrease in the amplitude of the transient PERG's N95 and P50-waves and steady-state PERG was found, the degree of which showed an inverse dependence on the angular size of the stimulus, which clearly distinguished the developed and advanced POAG stages from the initial GON. The developed stages are characterized by a decrease in the PhNR amplitude, calculated from the baseline, and the PhNR/b index, the reduction of which was the more significant the greater the intensity of the flash. A significant delay of the N95 peak for patterns of all angular sizes and a less pronounced lengthening of the latency of the P50 wave (significant only for small stimuli 0.8° and 0.3°) in comparison with the age norm were found. The latencies of the steady-state PERG and PhNR practically did not differ from the age norm values.
Conclusion. The revealed reduction in the amplitudes of N95 and P50 waves of transient and steady-state PERG, PhNR, and the PhNR/b index, as well as an increase in the peak latency of N95 and P50 waves of transient PERG, may be markers of functional changes in the retina associated with non-adaptive plasticity or reflecting a combination of the processes of adaptive plasticity and degeneration of RGCs. Further research in this area will help give a more accurate characterization of the found regularities and apply the obtained results in clinical practice.
About the Authors
V. I. KotelinRussian Federation
PhD student, Glaucoma Department
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia
M. V. Zueva
Russian Federation
Dr. of Biol. Sci., professor, head of department of clinical physiology of vision named after S.V. Kravkov
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia
I. V. Tsapenko
Russian Federation
Cand. of Biol. Sci., senior researcher, department of clinical physiology of vision named after S.V. Kravkov
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia
S. Yu. Petrov
Russian Federation
Dr. of Med. Sci., head of glaucoma department
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia
A. N. Zhuravleva
Russian Federation
Cand. of Med. Sci., researcher, glaucoma department
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia
References
1. Tham Y.C., Li X., Wong T.Y., et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121 (11): 2081–90. doi: 10.1016/j.ophtha.2014.05.013
2. Neroev V.V., Zueva M.V., Zhuravleva A.N., Tsapenko I.V. Structural and functional disorders in glaucoma: prospects for preclinical diagnosis. Part 2. Electrophysiological markers of early neuroplastic events. Ophthalmology in Russia. 2021; 17 (3s): 533–41 (in Russian). https://doi.org/10.18008/1816-5095-2020-3S-533-541
3. Kirillova M.O., Zueva M.V., Tsapenko I.V., Zhuravleva A.N.Electrophysiological markers of preclinical diagnosis of glaucomatous optic neuropathy. Russian ophthalmological journal. 2021; 14 (1): 35–41 (In Russian). https://doi.org/10.21516/2072-0076-2021-14-1-35-41
4. Sommer A., Katz J., Quigley H.A., et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch. Ophthalmol. 1991; 109 (1): 77–83. doi: 10.1001/archopht.1991.01080010079037
5. Hood D.C., Kardon R.H. A framework for comparing structural and functiona measures of glaucomatous damage. Prog. Retin. Eye Res. 2007; 26 (6): 688–710. https://doi.org/10.1016/j.preteyeres.2007.08.001
6. Mwanza J.C., Chang R.T., Budenz D.L., et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HDOCT in glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 2010; 51 (11): 5724–730. doi: 10.1167/iovs.10-5222
7. Zhang X., Dastiridou A., Francis B.A., et al. On behalf of the Advanced Imaging for Glaucoma Study Group. Comparison of glaucoma progression detection by optical coherence tomography and visual field. Am. J. Ophthalmol. 2017; 184: 63–74. doi:10.1016/j.ajo.2017.09.020
8. Gupta N., Yücel Y. Glaucoma as a neurodegenerative disease. Curr. Opin. Ophthalmol. 2007 Mar; 18 (2): 110–4. doi: 10.1097/ICU.0b013e3280895aea
9. Calkins D.J. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog. Retin. Eye Res. 2012; 31, 702–19. doi: 10.1016/j.preteyeres.2012.07.001
10. Zueva M.V. Dynamics of retinal ganglion cell death in glaucoma and its functional markers. Russian journal of glaucoma. 2016; 15 (1): 70–85 (In Russian).
11. Ly T., Gupta N., Weinreb R.N., Kaufman P.L., Yücel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis. Res. 2011; 51 (2): 243–50. https://doi.org/10.1016/j.visres.2010.08.003
12. Shou T., Liu J., Wang W., Zhou Y., Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest. Ophthalmol. Vis. Sci. 2003; 44: 3005–10. https://doi.org/10.1167/iovs.02-0620
13. Porciatti V., Ventura L.M. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J. Neuroophthalmol 2012; 32 (4): 354–8. https://doi.org/10.1097/WNO.0b013e3182745600
14. Kalesnykas G., Oglesby E.N., Zack D.J., et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2012; 53 (7): 3847–57. https://doi.org/10.1167/iovs.12-9712
15. Della Santina L., Inman D.M., Lupien C.B., Horner P.J., Wong R.O.L. Differential progression of structural and functional alterations indistinct retinal ganglion cell types in a mouse model of glaucoma. J. Neurosci. 2013; 33: 17444–57. doi: 10.1523/JNEUROSCI.5461-12.2013
16. Park H.Y., Kim J.H., Park C.K. Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Mol. Brain. 2014; 7: 53. https://doi.org/10.1186/s13041-014-0053-2
17. El-Danaf R.N., Huberman A.D. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J. Neurosci. 2015, 35 (6): 2329-43. https://doi.org/10.1523/JNEUROSCI.1419-14.2015
18. Neroev V.V., Zueva M.V., Tsapenko I.V., et al. Ischemic aspects of the pathogenesis of retinal diseases. Russian ophthalmological journal. 2010; 3 (1): 42–9 (in Russian).
19. Cuenca N., Fernandez-Sanchez L., Campello L., et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog. Ret. Eye Res. 2014; 43: 17–75. https://doi.org/10.1016/j.preteyeres.2014.07.001
20. Francardo V., Schmitz Y., Sulzer D., Cenci M.A. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp. Neurol. 2017; 298: 137–47. https://doi.org/10.1016/j.expneurol.2017.10.001
21. Bach M., Brigell M., Hawlina M., et al. ISCEV standard for clinical pattern electroretinography (PERG). Doc. Ophthalmol. 2013; 126: 1–7. doi.org/10.1007/s10633-012-9353-y
22. Frishman L., Sustar M., Kremers J., et al. ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc. Ophthalmol. 2018; 36 (3): 207–11. doi: 10.1007/s10633-018-9638-x
23. Kotelin V.I., Kirillova M.O., Zueva M.V., et al. Photopic negative response for testing the function of inner retina — registration requirements and comparison in the eyes with natural pupil width and in conditions of drug mydriasis. Ophthalmology in Russia. 2020; 17 (3): 398–406 (in Russian). https://doi.org/10.18008/1816-5095-2020-3-398-406
24. Zueva M.V., Zhuravleva A.N., Bogolepova A.N. Dendritic branching of retinal ganglion cells as a biomarker of glaucomatous optic neuropathy and Alzheimer's disease and a target of neuroprotective therapy. Ophthalmology in Russia. 2021; 18 (2): 265–75 (in Russian). https://doi.org/10.18008/1816-5095-2021-2-266-275
25. Liu M., Duggan J., Salt T.E., Cordeiro M.F. Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp. Eye Res. 2011; 92: 244–50. doi: 10.1016/j.exer.2011.01.014
26. Wang H.-L., Xian X.-H., Song Q.-Y., et al. Age-related alterations of neuronal excitability and voltage-dependent Ca2+ current in a spontaneous mouse model of Alzheimer’s disease. Behav. Brain Res. 2017; 321: 209–13. doi: 10.1016/j.bbr.2017.01.009
27. Kim J., Hughes E.G., Shetty A.S., et al. Changes in the excitability of neocortical neurons in a mouse model of amyotrophic lateral sclerosis are not specific to corticospinal neurons and are modulated by advancing disease. J. Neurosci. 2017; 37: 9037–53. doi: 10.1523/JNEUROSCI.0811-17.2017
28. Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 2012; 4: a005736. doi: 10.1101/cshperspect.a005736
29. Orr B.O., Hauswirth A.G., Celona B., et al. Presynaptic homeostasis opposes disease progression in mouse models of ALS-like degeneration: evidence for homeostatic neuroprotection. Neuron. 2020; 107: 95.e6–111.e6. doi: 10.1016/j.neuron.2020.04.009
30. Van Hook M.J., Monaco C., Bierlein E.R., Smith J.C. Neuronal and synaptic plasticity in the visual thalamus in mouse models of glaucoma. Front. Cell. Neurosci. 2021; 14: 626056. doi: 10.3389/fncel.2020.626056
31. Gupta N., Ly T., Zhang Q., et al. Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exp. Eye Res. 2007; 84: 176–84. doi: 10.1016/j.exer.2006.09.013
Review
For citations:
Kotelin V.I., Zueva M.V., Tsapenko I.V., Petrov S.Yu., Zhuravleva A.N. Electrophysiological markers of advanced stages of glaucomatous optic neuropathy. Russian Ophthalmological Journal. 2021;14(3):19-24. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-3-19-24