Preview

Russian Ophthalmological Journal

Advanced search

Electrophysiological signs of retinal cone remodeling in geographic atrophy of the pigment epithelium in patients with non-exudative age-related macular degeneration

https://doi.org/10.21516/2072-0076-2021-14-3-32-39

Abstract

Testing patients with primary geographic atrophy (GA) requires a multimodal approach and identification of functional biomarkers characterizing retinal structural remodeling.

Purpose: to identify the changes in the functional activity of the retinal cone system, which may serve as biomarkers of primary GA in non-exudative age-related macular degeneration (AMD).

Material and methods. We tested 22 patients (30 eyes) aged 45–83 (ave. 72.1 ± 10.8 years) with non-exudative AMD and 18 age matched controls (60.2 ± 7.6 years) all of which underwent standard ophthalmological examinations, optical coherence tomography, autofluorescence study, and fundus photography. Standard photopic ERGs, photopic flicker ERGs to stimuli with frequencies of 8.3, 10, 12, and 24 Hz, multifocal ERG (mfERG), and electrooculogram (EOG) were recorded.

Results. Electroretinographic signs for GA of retinal pigment epithelium and choriocapillary layer atrophy were described. The results confirm early impairment of the activity of cones in GA and weakening of the functional interaction of M ller cells with the cone bipolar cells. The delayed P1 peak latency of mfERG indicates a decrease in the entire central retina function in non-exudative AMD. A selective reduction in the fovea's mfERG magnitude can serve as a biomarker of primary GA. The spread of the P1 anomaly to adjacent rings may indicate a possible risk of disease progression. A decrease in the dark trough on the EOG and an increase in the Arden ratio can serve as a biomarker of primary GA.

Conclusion. We determined electrophysiological signs which can serve as markers of early retinal dysfunction in eyes with primary GA and non-exudative AMD.

About the Authors

N. V. Neroeva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

 Cand. of Med. Sci., ophthalmologist, department of retinal and optic nerve pathology 

 14/19, Sadovaya Chernogryazskaya St., Moscow, 105062, Russia 



M. V. Zueva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

 Dr. of Biol. Sci., professor, head of the department of clinical physiology of vision S.V. Kravkov 

 14/19, Sadovaya Chernogryazskaya St., Moscow, 105062, Russia 



V. V. Neroev
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

 Academician of the RAS, Dr. of Med. Sci., professor, head of the department of pathology of the retina and optic nerve, director 

 14/19, Sadovaya Chernogryazskaya St., Moscow, 105062, Russia 



I. V. Tsapenko
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

 Cand. of Biol. Sci., senior researcher, department of clinical physiology of vision S.V. Kravkov 

 14/19, Sadovaya Chernogryazskaya St., Moscow, 105062, Russia 



M. V. Ryabina
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

 Cand. of Med. Sci., researcher, department of pathology of the retina and optic nerve 

 14/19, Sadovaya Chernogryazskaya St., Moscow, 105062, Russia 



O. A. Losanova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

 PhD student, department of pathology of the retina and optic nerve 

 14/19, Sadovaya Chernogryazskaya St., Moscow, 105062, Russia 



L. A. Katargina
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

 Dr. of Med. Sci., professor, deputy director 

 14/19, Sadovaya Chernogryazskaya St., Moscow, 105062, Russia 



References

1. Wong W.L., Su X., Li X., et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014; 2 (2): 106–16. doi: 10.1016/S2214-109X(13)70145-1

2. Rein D.B., Wittenborn J.S., Zhang X., et al. Forecasting age-related macular degeneration through the year 2050: the potential impact of new treatments. Arch. Ophthalmol. 2009; 127: 533–40. doi: 10.1001/archophthalmol.2009.58

3. Gehrs K.M., Anderson D.H., Johnson L.V., et al. Age-related macular degeneration – emerging pathogenetic and therapeutic concepts. Ann. Med. 2006; 38: 450–71. doi: 10.1080/07853890600946724

4. Hamann S. Molecular mechanisms of water transport in the eye. Int. Rev. Cytol. 2002; 215: 395–431. doi: 10.1016/s0074-7696(02)15016-9

5. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81. doi: 10.1152/physrev.00021.2004

6. Bhutto I., Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane / choriocapillaris complex. Mol. Aspects Med. 2012; 33 (4): 295–317. doi: 10.1016/j.mam.2012.04.005

7. Sarks J.P., Sarks S.H., Killingsworth M.C. Evolution of geographic atrophy of the retinal pigment epithelium. Eye (Lond). 1988; 2 (Pt.5): 552–77. doi: 10.1038/eye.1988.106

8. Curcio C.A. Photoreceptor topography in ageing and age-related maculopathy. Eye (Lond). 2001; 15: 376–83. doi: 10.1038/eye.2001.140

9. Sunness J.S. Geographic atrophy in Age Related Macular Degeneration (Berger J.W., Fine S.L., Maguire M.G., eds.). St. Louis: Mosby, 1999; 155.

10. Bonilha V.L. Age and disease-related structural changes in the retinal pigment epithelium. Clin. Ophthalmol. 2008; 2: 413–24. doi: 10.2147/opth.s2151

11. Snodderly D.M., Sandstrom M.M., Leung I., et al. Retinal pigment epithelial cell distribution in central retina of rhesus monkeys. Invest. Ophthalmol. Vis. Sci. 2002; 43: 2815–8.

12. Sadda S.R., Chakravarthy U., Birch D.G., et al. Clinical endpoints for the study of geographic atrophy secondary to Age-Related Macular Degeneration. Retina. 2016 October; 36 (10): 1806–22. doi:10.1097/IAE.0000000000001283

13. McCulloch D.L., Marmor M.F., Brigell M.G., et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc. Ophthalmol. 2015; 130 (1): 1–12. doi: 10.1007/s10633-014-9473-7

14. Zueva M.V., Neroev V.V., Tsapenko I.V., et al. Topographic diagnosis of retinal dysfunction in case of rhegmatogenous retinal detachment by the rhythmic ERG method of a wide range of frequencies. Russian ophthalmological journal. 2009; 1 (2): 18–23 (in Russian).

15. Zueva M.V., Tsapenko I.V. Muller cells: spectrum and profile of glio-neuronal interactions in the retina. Rossijskij fiziologicheskij zhurnal im. Sechenova. 2004; 90 (8): 435–6 (in Russian).

16. Hood D.C., Bach M., Brigell M., et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc. Ophthalmol. 2012; 124 (1): 1–13. doi: 10.1007/s10633-011-9296-8

17. Constable P.A., Bach M., Frishman L.J., et al. ISCEV Standard for clinical electro-oculography (2017 update). Doc. Ophthalmol. 134, 1–9 (2017). doi: 10.1007/s10633-017-9573-2

18. Ronan Sh., Nusinowitz S., Swaroop A., et al. Senile panretinal cone dysfunction in age-related macular degeneration (AMD): a report of 52 AMD patients compared to age-matched controls. Trans. Am. Ophthalmol. Soc. 2006; 104: 232–40.

19. Kader M.A. Electrophysiological study of age related macular degeneration. New Front. Ophthalmol. 2017; 3 (1): 1–6. doi: 10.15761/NFO.1000156

20. Parisi V., Perillo L., Tedeschi M., et al. Macular function in eyes with early age-related macular degeneration with or without contralateral late agerelated macular degeneration. Retina. 2007; 27: 879–90. doi: 10.1097/IAE.0b013e318042d6aa

21. Wu Z., Ayton L.N., Guymer R.H., et al. Low-luminance visual acuity and microperimetry in age-related macular degeneration. Ophthalmology. 2014; 121: 1612–9. doi: 10.1016/j.ophtha.2014.02.005

22. Owsley C., Jackson G.R., Cideciyan A.V., et al. Psychophysical evidence for rod vulnerability in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2000; 41: 267–73.

23. Schmitz-Valckenberg S., B ltmann S., Dreyhaupt J., et al.Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2004; 45: 4470–6. doi: 10.1167/iovs.03-1311

24. Li J., Tso M.O., Lam T.T. Reduced amplitude and delayed latency in foveal response of multifocal electroretinogram in early age related macular degeneration. Br. J. Ophthalmol. 2001; 85: 287–90. doi: 10.1136/bjo.85.3.287

25. Nunes R.P., Gregori G., Yehoshua Z., et al. Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina. Ophthalmic Surg. Lasers Imaging Retina. 2013; 44: 344–59. doi: 10.3928/23258160-20130715-06

26. Wu Z., Ayton L.N., Guymer R.H., et al. Relationship between the second reflective band on optical coherence tomography and multifocal electroretinography in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2013; 54: 2800–6. doi:10.1167/iovs.13-11613

27. Jurklies B., Weismann M., H sing J., et al. Monitoring retinal function in neovascular maculopathy using multifocal electroretinography early and long term correlation with clinical findings. Graefe’s Arch. Clin. Exp. Ophthalmol. 2002; 240: 244–64. doi:10.1007/s00417-002-0439-1

28. Park J.Y., Kim S.H., Park T.K., et al. Multifocal electroretinogram findings after intravitreal Bevacizumab injection in choroidal neovascularization of age-related macular degeneration. Korean J. Ophthalmol. 2011; 25 (3): 161–5. doi: 10.3341/kjo.2011.25.3.161

29. Gonz lez-Garc a E., Vilela C., Navea A., et al. Electrophysiological and clinical tests in dry age-related macular degeneration follow-up: differences between mfERG and OCT. Doc. Ophthalmol. 2016; 133 (1): 31–9. doi: 10.1007/s10633-016-9545-y

30. Alanko H.I. Clinical electro-oculography. Acta Ophthalmol. Suppl. 1984;161: 139–48.

31. R ver J., Bach M. C-wave versus electrooculogram in diseases of the retinal pigment epithelium. Doc. Ophthalmol. 1987; 65: 385–91.

32. Gupta L.Y., Marmar M.F. Sequential recording of photic and non-photic electrooculogram responses in patients with extensive extra-macular drusen. Doc. Ophthalmol. 1994; 88: 49–55.

33. Friedman E. A hemodynamic model of the pathogenesis of age-related macular degeneration. Am. J. Ophthalmol. 1997; 124: 677–82.

34. Walter P., Widder R.A., L ke C., et al. Electrophysiological abnormalities in age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 1999; 237: 962–8.


Review

For citations:


Neroeva N.V., Zueva M.V., Neroev V.V., Tsapenko I.V., Ryabina M.V., Losanova O.A., Katargina L.A. Electrophysiological signs of retinal cone remodeling in geographic atrophy of the pigment epithelium in patients with non-exudative age-related macular degeneration. Russian Ophthalmological Journal. 2021;14(3):32-39. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-3-32-39

Views: 796


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)