Structural and biomechanical properties and trace elements composition of the corneoscleral eye shell in normal tension glaucoma
https://doi.org/10.21516/2072-0076-2021-14-3-113-119
Abstract
The results of comparative studies of the structural and biomechanical features of the corneoscleral eye shell in various clinical forms of glaucoma are presented. The article discusses how the systemic and local imbalance of trace elements that regulate collagen biosynthesis, the formation of cross-links in the connective tissue structures of the sclera, and the hydrodynamics of the intraocular fluid, affect the intraocular pressure level, and thereby the character of the development of glaucomatous lesions in normal tension glaucoma. Modern literature is shown to indicate the prospects for further research in this direction.
About the Authors
L. L. ArutyunyanRussian Federation
Dr. of Med. Sci., head of the diagnostic unit, professor of chair of ophthalmology
10-1 Poliny Osipenko st., Moscow, Russia
2/1 Bldg. 1, Barrikadnaya St., Moscow, 125993, Russia
E. N. Iomdina
Russian Federation
Dr. of Biol. Sci., professor, principal researcher, department of refraction pathology, binocular vision and ophthalmoergonomics
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia
Yu. S. Morozova
Russian Federation
ophthalmologist, PhD student of chair of ophthalmology
10-1 Poliny Osipenko st., Moscow, Russia
2/1 Bldg. 1, Barrikadnaya St., Moscow, 125993, Russia
S. I. Anisimov
Russian Federation
Dr. of Med. Sci., professor, scientific director, professor of chair ophthalmology
10-1 Poliny Osipenko st., Moscow, Russia
20, bld. 1, Delegatskaya str., Moscow, 127473, Russia
S. Yu. Anisimova
Russian Federation
Dr. of Med. Sci., professor, director
10-1 Poliny Osipenko st., Moscow, Russia
References
1. Nesterov A.P., Aliab’eva Zh.Iu., Lavrent’ev A.V. Normal pressure glaucoma: a hypothesis of pathogenesis. Vestnik oftal’mologii. 2003; 2: 3–6 (In Russian).
2. Volkov V.V. Glauсoma in pseudonormal intraocular pressure. Guidelines for clinicians. Мoscow: Meditsina; 2001 (In Russian).
3. Mallick J., Devi L., Malik P.K., Mallick J. Update on normal tension glaucoma. J. Ophthalmic Vis. Res. 2016 Apr-Jun; 11 (2): 204–8. doi:10.4103/2008-322X.183914
4. Egorov E.A., Erichev V.P. National guidance of glaucoma. 3rd edition. Moscow: GEOTAR-Media; 2019 (in Russian). doi: 10.33029/9704-5442-8-GLA-2020-1-384
5. Petrov S.Yu. Modern view on normal-tension glaucoma. Vestnik oftalmologii. 2020; 136 (6): 57–64 (In Russian). https://doi.org/10.17116/oftalma202013606157
6. Simakova I.L., Suleimanova A.R. Modern approach to the diagnosis of normal tension glaucoma taking into account the features of its pathogenesis. Oftal’mologicheskie vedomosti. 2020; 13 (1): 53–64 (In Russian). https://doi.org/10.17816/OV19425
7. Avetisov S.E., Bubnova I.A., Antonov A.A. Vestnik oftal’mologii. 2008; 124 (5): 14–6 (in Russian).
8. Iomdina E.N., Bauer S.M., Kotliar K.E. Eye biomechanics: theoretical aspects and clinical applications. Moscow: Real Time; 2015 (in Russian).
9. Zimprich L., Diedrich J., Bleeker A., Schweitzer J.A. Corneal Hysteresis as a biomarker of glaucoma: current insights. Clin Ophthalmol. 2020; 14: 2255–64. doi:10.2147/OPTH.S236114
10. Park K., Shin J., Lee J. Relationship between corneal biomechanical properties and structural biomarkers in patients with normal-tension glaucoma: a retrospective study. BMC Ophthalmol. 2018; 18: 7. https://doi.org/10.1186/s12886-018-0673-x
11. Wells A.P., Garway-Heath D.F., Poostchi A., et al. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest. Ophthalmol. Vis. Sci.. August 2008; 49: 3262–8. doi:https://doi.org/10.1167/iovs.07-1556
12. Iomdina E.N., Arutunyan L.L., Katargina L.A., Kiseleva O.A., Filippova O.M. Interrelation between corneal hysteresis and structural functional parameters of the optic nerve in different stages of primary open angle glaucoma. Russian ophthalmological journal. 2009; 2 (3): 17–23 (In Russian).
13. Kim Y.C., Koo Y. H., Jung K.I., Park C.K. Impact of posterior sclera on glaucoma progression in treated myopic normal-tension glaucoma using reconstructed optical coherence tomographic images. Invest. Ophthalmol. Vis. Sci. 2019; 60: 2198-207. doi: https://doi.org/10.1167/iovs.19-26794
14. Park L.H.Y, Lee N.Y., Choi J.A., Park C.K. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia. Am. J. Ophthalmol. 2014 Apr; 157 (4): 876–84. doi: 10.1016/j.ajo.2014.01.007
15. Roberts M.D., Sigal I.A., Liang Y., Burgoyne C.F., Downs J.C. Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2010; 51 (11): 5675–84. doi: 10.1167/iovs.10-5411
16. Quigley H.A. Glaucoma: Macrocosm to microcosm. The Friedenwald Lecture. Invest. Ophthalmol. Vis. Sci. 2005; 2005 Aug; 46: 2663–70. doi: 10.1167/iovs.04-1070
17. Kiseleva O.A., Iomdina E.N., Yakubova L.V., Khoziev D.D. Lamina cribrosa in glaucoma: biomechanical properties and possibilities of their clinical control. Russian ophthalmological journal. 2018; 11 (3): 76–83 (In Russian). https://doi.org/10.21516/2072-0076-2018-11-3-76-83
18. Morgan J.E. Circulation and axonal transport in the optic nerve. Eye (Lond). 2004; 18: 1089–95. doi: 10.1038/sj.eye.6701574
19. Midgett D., Liu B., Ling Y.T.T., Jefferys J.L., Quigley H.A., Nguyen T.D. The effects of glaucoma on the pressure-induced strain response of the human lamina cribrosa. Invest. Ophthalmol. Vis. Sci. 2020; 61 (4): 41. https://doi.org/10.1167/iovs.61.4.41
20. Burgoyne C.F., Downs J.C. Premise and prediction — how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J.Glaucoma. Jun-Jul 2008; 17 (4): 318–28. doi: 10.1097/IJG.0b013e31815a343b
21. Burgoyne C.F., Downs J.C., Bellezza A.J., et al. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOPrelated stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005 Jan; 24 (1): 39–73. doi: 10.1016/j.preteyeres.2004.06.001
22. Sigal I.A., Flanagan J.G., Ethier C.R. Factors influencing optic nerve head biomechanics. Invest. Ophthalmol.Vis. Sci. 2005 Nov; 46 (11): 4189–99. doi: 10.1167/iovs.05-0541
23. Geraghty B., Jones S.W., Rama P., Akhtar R., Elsheikh A. Age-related variations in the biomechanical properties of human sclera. J. Mech. Behav. Biomed. Mater. 2012 Dec; 16: 181–91. doi: 10.1016/j.jmbbm.2012.10.011
24. Zhukova S.I., Yurieva T.N., Pomkina I.V. Features of the disorders of regional hemodynamics in patients with glaucoma at different levels of intraocular pressure. Practical medicine. 2018; 3 (114): 57–63 (In Russian). https://www.yumpu.com/xx/embed/view/CrR4tY80vGXhgWiV
25. Park H.Y., Jeon S.H., Park C.K. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary openangle glaucoma. Ophthalmology. 2012; 119: 10–20. https://doi.org/10.1016/j.ophtha.2011.07.033
26. Park H.Y., Park C.K. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. 2013; 120 (4): 745–52. https://doi.org/10.1016/j.ophtha.2012.09.05
27. Iomdina E.N., Arutyunyan L.L., Ignatieva N.Yu. A comparative study of agerelated level of sclera collagen crosslinking in patients with different stages of primary open angle glaucoma. Russian ophthalmological journal. 2016; 9 (1): 19–26 (In Russian). https://doi.org/10.21516/2072-0076-2016-9-1-19-26
28. Iomdina E.N., Ignat’eva N.Yu., Danilov N.A., et al. Biochemical, structural and biomechanical features of human scleral matrix in primary open-angle glaucoma. Vestnik oftal’mologii. 2011; 6: 10–4 (In Russian).
29. Fratzl P. Collagen. Structure and Mechanics. Potsdam: Springer. 2008.
30. Mott J.D., Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. 2004 Oct; 16 (5): 558–64. doi: 10.1016/j.ceb.2004.07.010
31. Malemud C.J. Matrix metalloproteinase (MMPs) in health and disease an overview. Front Biosci. 2006 May; 1 (11): 1696–701.doi: 10.2741/191
32. Rebrova G.A., Berzhitskaya V.V., Vasilevsky V.K., Timofeeva M.V., Ho So San. Some factors of collagen aging in vivo and in vitro. Biomedicinskaya khimija. 2003; 49 (2): 128–37 (In Russian).
33. Welge-Lussen U., May C.A. Induction of tissue transglutaminase in the trabecular meshwork by TGF-beta1 and TGF-beta2. Invest. Ophthalmol. Vis. Sci. 2000 Jul; 41 (8): 2229–38. PMID:10892867
34. Vinetskaya M.I., Iomdina E.N. Study of lacrimal fluid trace elements in several eye diseases. Vestnik Ofthal’mologii. 1994; 4: 24–6 (In Russian)].
35. Iomdina Е.N., Kiseleva О.А., Arutyunyan L.L., Аrefyeva М.V. Trace element imbalance in the pathogenesis of primary open-angle glaucoma. Russian ophthalmological journal. 2012; 5 (1): 104–8 (In Russian).
36. Kravchik M.V., Novikov I.A., Petrov S.Yu., Avetisov S.E. Bioinorganic chemistry of open-angle glaucoma: A review. Journal of Trace Elements in Medicine and Biology. 2020; 62. 126652. https://doi.org/10.1016/j.jtemb.2020.126652
37. Bruhn R.L., Stamer W.D., Herrygers L.A., Levine J.M., Noecker R.J. Relationship between glaucoma and selenium levels in plasma and aqueous humour. Br. J. Ophthalmol. 2009 Sep; 93 (9): 1155–8. doi: 10.1136/bjo.2007.125997
38. Lin S.C., Singh K., Lin S.C. Association between body levels of trace metals and glaucoma prevalence. JAMA Ophthalmol. 2015; 133 (10): 1144–50. doi:10.1001/jamaophthalmol.2015.2438
39. Jünemann A.G.M., Michalke B., Lucio M., et al. Aqueous humor selenium level and open-angle glaucoma. J. Trace Elem. Med. Biol. 2018; 50: 67–72. doi:10.1016/j.jtemb.2018.06.010
40. Goyal A., Srivastava A., Sihota R., Kaur J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr. Eye Res. 2014 Aug; 39 (8): 823–9. doi: 10.3109/02713683.2011.556299
41. Hohberger B., Chaudhri M.A., Michalke B., et al. Levels of aqueous humor trace elements in patients with open-angle glaucoma. J. Trace Elem. Med. Biol. 2018; 45: 150–5. https://doi.org/10.1016/j.jtemb.2017.10.003
42. Michalke B. Trace elements in glaucoma — the impact of analytics. Acta Ophthalmologica. Abstracts from the 2019 European Association for Vision and Eye Research Conference. https://doi.org/10.1111/j.1755-3768.2019.815
43. Fick A., Jünemann A., Michalke B., Lucio M., Hohberger B. Levels of serum trace elements in patients with primary open-angle glaucoma. J. Trace Elem. Med. Biol. 2019; 53: 129–34. https://doi. org/10.1016/j.jtemb.2019.02.006
44. Akyol N., Deger O., Keha E.E., Kilic S. Aqueous humour and serum zinc and copper concentrations of patients with glaucoma and cataract. Br. J. Ophthalmol. 1990 Nov; 74 (11): 661–2. doi: 10.1136/bjo.74.11.661
45. Cumurcu T., Mendil D., Etikan I. Levels of zinc, iron, and copper in patients with pseudoexfoliative cataract. Eur. J. Ophthalmol. Jul-Aug 2006; 16 (4): 548–53. doi: 10.1177/112067210601600408
46. Panteli V.S., Kanellopoulou D.G., Gartaganis S.P., Koutsoukos P.G. Application of anodic stripping voltammetry for zinc, copper, and cadmium quantification in the aqueous humor: implications of pseudoexfoliation syndrome. Biol. Trace Elem. Res. 2009; 132 (1–3): 9–18. https://doi.org/10.1007/s12011-009-8380-3
47. Iomdina E.N., Kiseleva O.A., Kachan O.V., Zhukov S.R. Trace element content of aqueous humor as a factor of its metabolic activity and hydrodynamics in glaucoma and cataract. In: Ocular Biomechanics. Moscow; 2005: 74–8 (In Russian).
48. Iomdina E.N., Kiseleva O.A., Filatova I.A., Аrefyeva М.V., Arutyunyan L.L., Khorosheva E.V. A study of trace elements balance as a factor influencing the biomechanical parameters of the corneoscleral shell of the eye in open angle glaucoma In: Ocular Biomechanics. Moscow; 2009: 114–8 (In Russian).
49. Ugarte M., Osborne N.N. Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics. 2014 Feb; 6 (2): 189–200. doi: 10.1039/c3mt00291h
50. Bocca B., Forte G., Pisano A., et al. A pilot study to evaluate the levels of aqueous humor trace elements in open-angle glaucoma. J. Trace Elem. Med. Biol. 2020; 61. 126560. doi:10.1016/j.jtemb.2020.126560
51. Winum J.Y., Scozzafava A., Montero J.L., Supuran C.T. Metal binding functions in the design of carbonic anhydrase inhibitors. Current topics in medicinal chemistry. 2007; 7 (9): 835–48.
52. Trakhtenberg E.F., Li Y., Feng Q., et al. Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury. Exp. Neurol. 2018; 300: 22–9.
53. Lin Y., Epstein D.L., Liton P.B. Intralysosomal iron induces lysosomal membrane permeabilization and cathepsin D-mediated cell death in trabecular meshwork cells exposed to oxidative stress. Invest. Ophthalmol. Vis. Sci. 2010; 51 (12): 6483–95. doi:10.1167/iovs.10-5410
54. O ' Dell B.L. Roles for iron and copper in connective tissue biosynthesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci 1981; 29 (1071): 91–104.
55. Yamasaki K., Hagiwara H. Excess iron inhibits osteoblast metabolism. Toxicol. Lett. 2009; 191 (2–3): 211–5.
56. Torshin I.Yu., Gromova O.A. Connective tissue dysplasia, cell biology and molecular mechanisms of magnesium action. Rossijskij medicinskij zhurnal. 2008; 16 (4): 230–8 (In Russian).
57. Кудрин А.В., Громова О.А. Микроэлементы в неврологии. Москва: ГЭОТАР-Медиа; 2006. [Kudrin A.V., Gromova O.A. Trace elements in neurology. Moscow: GEOTAR-Media; 2006 (In Russian)].
58. Johnson S. The multifaceted and widespread pathology of magnesium deficiency. Med. Hypotheses. 2001; 56 (2): 163–70.
59. Ekici F., KorkmazŞ., Karaca E.E., et al. The role of magnesium in the pathogenesis and treatment of glaucoma. International Scholarly Research Notices. 2014, Article ID 745439, 7 pages http://dx.doi.org/10.1155/2014/745439
60. Gromova O.A., Torshin I.Yu. Connective tissue dysplasia. Rossijskij medicinskij zhurnal. 2008; 8 (6): 9–16 (In Russian).
61. Senni K., Foucault-Bertaud A., Godeau G. Magnesium and connective tissue. Magnes. Res. 2003. 16 (1): 70–4.
62. Wang S.Y., Singh K., Lin S.C. The association between glaucoma prevalence and supplementation with the oxidants calcium and iron. Invest. Ophthalmol. Vis. Sci. 2012 Feb 13; 53 (2): 725–31. doi: 10.1167/iovs.11-9038
63. Giordano R., Costantini S., Vernillo I., Rizzica M. Atomic absorption techniques for the microdetermination of multielements in whole tear film. Atomic Spectroscopy. 1983; 4 (4): 157–9.
64. Kiseleva O.A., Iomdina E.N., Vasilenkova L.V., et al. Use of magnesium-containing drug for the treatment of patients with primary open angle glaucoma. Farmateka. 2012; 3: 91–5 (In Russian).
65. Gaspar A. Z., Gasser P., Flammer J. The influence of magnesium on visual field and peripheral vasospasm in glaucoma. Ophthalmologica. 1995; 209 (1): 11–3. doi: 10.1159/000310566
66. Aydin B., Önol M., Hondur A., et al. The effect of oral magnesium therapy on visual field and ocular blood flow in normotensive glaucoma. Eur. J. Ophthalmol. Jan-Feb 2010; 20 (1): 131–5. doi: 10.1177/112067211002000118
67. Iomdina E.N., Kiseleva O.A., Vasilenkova L.V., Arefyeva M.V., Arutyunyan L.L., Kuryleva I.M., Kantarzhi E.P. Impact of magnesium level correction on intraocular pressure and biomechanical parameters of the corneoscleral capsule of patients with primary open-angle glaucoma. Russian ophthalmological journal. 2012; 5 (4): 27–32 (In Russian).
68. Avetisov S.E., Erichev V.P., Yaremenko T.V. Rationale for neuroprotection in glaucoma. Natsional’nyi zhurnal glaukoma. 2019; 18 (1): 85–94 (In Russian). https://doi.org/10.25700/NJG.2019.01.10
69. Ceylan O.M., Demirdog̈ en B.C., Mumcuog ̆ lu T., Aykut O. ̆ Evaluation of essential and toxic trace elements in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Biol. Trace Elem. Res. 2013 Jun; 153 (1–3): 28–34. doi: 10.1007/s12011-013-9644-5
70. Lee S.H., Kang E.M., Kim G.A., et al. Three toxic heavy metals in open-angle glaucoma with low-teen and high- teen intraocular pressure: a cross-sectional study from South Korea. PLoS One. 2016; 11 (10): e0164983. https://doi.org/10.1371/journal.pone.0164983
Review
For citations:
Arutyunyan L.L., Iomdina E.N., Morozova Yu.S., Anisimov S.I., Anisimova S.Yu. Structural and biomechanical properties and trace elements composition of the corneoscleral eye shell in normal tension glaucoma. Russian Ophthalmological Journal. 2021;14(3):113-119. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-3-113-119