Preview

Russian Ophthalmological Journal

Advanced search

Adverse ocular effects of neuroleptic therapy: semiotics, pathogenesis and treatment

https://doi.org/10.21516/2072-0076-2021-14-4-172-178

Abstract

Antipsychotics are widely used in psychiatric practice for treating schizophrenia, bipolar disorder, and other diseases, including those treated off-label. They manifest many adverse effects, including ophthalmic ones. Some of these effects, such as persistent mydriasis, cycloplegia, extraocular muscle dystonia, and visual hypersensitivity attacks are reversible, since they disappear after dose reduction or drug withdrawal. Yet other side effects, such as cataracts, corneal edema, acute angle closure glaucoma and retinopathy are threatening for sight and may lead to permanent visual acuity decline and even blindness. The review provides data on the incidence of ocular side effects (both typical and atypical) of multiple antipsychotics, their clinical manifestations, pathogenesis and treatment. Eye examination is recommended for patients taking antipsychotics in the early periods of treatment and then twice a year. The psychiatrists need to know about the adverse effects of individual drugs whilst the ophthalmologists should be aware of their semiotics, pathogenesis and treatment, since timely diagnosis and treatment of pathological changes, together with antipsychotic therapy modification, prevent the development of severe and irreversible visual impairment in the majority of cases.

About the Authors

A. A. Panov
Lomonosov Moscow State University
Russian Federation

Andrey A. Panov — student of the faculty of fundamental medicine

GSP-1, Leninskie Gory, Moscow, 119991



A. A. Petukhova
Lomonosov Moscow State University
Russian Federation

Alena A. Petukhova — student of the faculty of fundamental medicine

GSP-1, Leninskie Gory, Moscow, 119991



Ya. V. Malygin
A.I. Yevdokimov Moscow State University of Medicine and Dentistry; Pirogov Russian National Research Medical University
Russian Federation

Yaroslav V. Malygin — Dr. of Med. Sci., professor of department of psychiatry, addictology and psychotherapy, faculty of additional professional education, senior lecturer of department of humanities, international faculty

20/1, Delegatskaya St., Moscow, 127473

1, Ostrovityanova St., Moscow, 117997



B. D. Tsygankov
A.I. Yevdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Boris D. Tsygankov — Dr. of Med. Sci., professor, corresponding member of Russian Academy of Sciences, head of department of psychiatry, addictology and psychotherapy, faculty of additional professional education

20/1, Delegatskaya St., Moscow, 127473



M. A. Kazanfarova
Skolkovo Innovation Center
Russian Federation

Marina A. Kazanfarova — Cand. of Med. Sci., head of the division of the development of educational projects of the international medical cluster

46/1, Bolshoy boulevard, Moscow, 143026



References

1. Park E.J., Amatya S., Kim M.S., et al. Long-acting injectable formulations of antipsychotic drugs for the treatment of schizophrenia. Arch. Pharm. Res. 2013; 36 (6): 651–9. doi: 10.1007/s12272-013-0105-7

2. Tsygankov B.D., Agasarian É.G. An analysis of efficacy and safety of modern and classical antipsychotic drugs. Zh. Nevrol. Psihiatr. Im. S.S. Korsakova. 2006; 106 (9): 87–93.

3. Maher A.R., Maglione M., Bagley S., et al. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: a systematic review and meta-analysis. JAMA. 2011; 306 (12): 1359–69. doi: 10.1001/jama.2011.1360

4. Howard P., Twycross R., Shuster J., Mihalyo M., Wilcock A. Antipsychotics.

5. J. Pain Symptom Manage. 2011; 41 (5): 956–65. doi: 10.1016/j.jpainsymman.2011.03.002

6. Kaar S. J., Natesan S., McCutcheon R., Howes O.D. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology. 2020; 172: 107704. doi: 10.1016/j.neuropharm.2019.107704

7. Richa S., Yazbek J.C. Ocular adverse effects of common psychotropic agents: a review. CNS Drugs. 2010; 24 (6): 501–26. doi: 10.2165/11533180-000000000-00000 7. Huff L. S., Prado R., Pederson J.F., Dunnick C.A., Lucas L.M. Chlorpromazineinduced skin pigmentation with corneal and lens opacities. Cutis. 2014; 93 (5): 247–50.

8. Molina-Ruiz A.M., Pulpillo ., Molina-Ruiz R.M., Sagrario T., Requena L. Chlorpromazine-induced severe skin pigmentation and corneal opacities in a patient with schizophrenia. Int. J. Dermatol. 2016; 55 (8): 909–1012. doi: 10.1111/ijd.13085

9. Kim S., Thomasy S.M., Ramsey D., et al. Whorl pattern keratopathies in veterinary and human patients. Vet. Ophthalmol. 2018; 21 (6): 661–7. doi: 10.1111/vop.12552

10. Raizman M.B., Hamrah P., Holland E.J., et al. Drug-induced corneal epithelial changes. Surv. Ophthalmol. 2017; 62 (3): 286–301. doi: 10.1016/j.survophthal.2016.11.008

11. Hamaguchi R., Haginaka J., Tanimoto T., Kuroda Y. Maintenance of luminal pH and protease activity in lysosomes/late endosomes by vacuolar ATPase in chlorpromazine-treated RAW264 cells accumulating phospholipids. Cell. Biol. Toxicol. 2014; 30 (1): 67–77. doi: 10.1007/s10565-014-9269-2

12. Gowda G.S., Hegde A., Shanbhag V., Narayanaswamy J.C., Jaisoorya T.S. Kerato-lenticular ocular deposits and visual impairment with prolonged chlorpromazine use: A case series. Asian J. Psychiatr. 2017; 25: 188-90. doi: 10.1016/j.ajp.2016.11.002

13. Koh V., Khor W.B., Lim L. Chlorpromazine-induced corneal toxicity. Arch. Ophthalmol. 2012; 130 (11): 1409. doi: 10.1001/archophthalmol.2012.475

14. Gokulgandhi M.R., Vadlapudi A.D., Mitra A.K. Ocular toxicity from systemically administered xenobiotics. Expert. Opin. Drug Metab. Toxicol. 2012; 8 (10): 1277–91. doi: 10.1517/17425255.2012.708337

15. Sie N.M., Yam G.H., Soh Y.Q., et al. Regenerative capacity of the corneal transition zone for endothelial cell therapy. Stem Cell Res. Ther. 2020; 11 (1): 523. doi:10.1186/s13287-020-02046-2

16. Farid M., Rhee M.K., Akpek E.K., et al. Corneal edema and opacification preferred practice pattern®. Ophthalmology. 2019; 126 (1): 216–85. doi: 10.1016/j.ophtha.2018.10.022

17. Siafis S., Tzachanis D., Samara M., Papazisis G. Antipsychotic drugs: from receptor-binding profiles to metabolic side effects. Curr. Neuropharmacol. 2018; 16 (8): 1210–23. doi: 10.2174/1570159X15666170630163616

18. Razeghinejad M.R., Pro M.J., Katz L.J. Non-steroidal drug-induced glaucoma. Eye (Lond). 2011; 25 (8): 971–80. doi: 10.1038/eye.2011.128

19. Oshika T. Ocular adverse effects of neuropsychiatric agents. Incidence and management. Drug Saf. 1995; 12 (4): 256–63. doi: 10.2165/00002018-199512040-00005

20. Ah-Kee E.Y., Egong E., Shafi A., Lim L.T., Yim J.L. A review of drug-induced acute angle closure glaucoma for non-ophthalmologists. Qatar Med. J. 2015; 6: 1–8. doi: 10.5339/qmj.2015.6

21. Yang M.C., Lin K.Y. Drug-induced acute angle-closure glaucoma: a review. J. Curr. Glaucoma Pract. 2019; 13 (3): 104–9. doi: 10.5005/jpjournals-10078-1261

22. Flores-S nchez B.C., Tatham A.J. Acute angle closure glaucoma. Br. J. Hosp. Med. (Lond). 2019; 80 (12): C174–9. doi: 10.12968/hmed.2019.80.12.C174

23. Chan P.P., Pang J.C., Tham C.C. Acute primary angle closure-treatment strategies, evidences and economical considerations. Eye (Lond). 2019; 33 (1): 110–9. doi: 10.1038/s41433-018-0278-x

24. Husain R., Gazzard G., Aung T., et al. Initial management of acute primary angle closure: a randomized trial comparing phacoemulsification with laser peripheral iridotomy. Ophthalmology. 2012; 119 (11): 2274–81. doi: 10.1016/j.ophtha.2012.06.015

25. Alam M.S., Praveen Kumar K.V. Clozapine-induced cataract in a young female. J. Pharmacol. Pharmacother. 2016; 7 (4): 184–6. doi: 10.4103/0976-500X.195904

26. Prokofyeva E., Wegener A., Zrenner E. Cataract prevalence and prevention in Europe: a literature review. Acta Ophthalmol. 2013; 91 (5): 395–405. doi: 10.1111/j.1755-3768.2012.02444.x

27. Ooi I.L.E., Umi Kalthum M.N., Suzaily W., Aida Zairani M.Z., Yong T.K. Ocular manifestation of chlorpromazine toxicity- a case report. J. Ophthalmic Pathol. 2014; 3 (2): 1–2. doi: 03. 10.4172/2324-8599.1000133

28. Tsygankov B.D., Agasaryan E.G., Zykova A.S. Antipsychotic drugs and their influence on the carbohydrate metabolism in patients with schizophreniaspectrum disorders. Zh. Nevrol. Psihiatr. im. S.S. Korsakova. 2014; 5: 86–91.

29. Lim C.Z., Sonny Teo K.S., Tai E. Olanzapine-induced cataract in a teenage girl. Cureus. 2018; 10 (4): e2553. doi: 10.7759/cureus.2553

30. Chou P.H., Chu C S., Lin C.H., et al. Use of atypical antipsychotics and risks of cataract development in patients with schizophrenia: A population-based, nested case-control study. Schizophr. Res. 2016; 174 (1–3): 137–43. doi: 10.1016/j.schres.2016.03.027

31. Olson R.J., Braga-Mele R., Chen S.H., et al. Cataract in the adult eye preferred practice pattern®. Ophthalmology. 2017; 124 (2): 1–119. doi: 10.1016/j.ophtha.2016.09.027

32. Chu C.S., Chou P.H., Chen Y.H., et al. Association between antipsychotic drug use and cataracts in patients with bipolar disorder: A population-based, nested case-control study. J. Affect. Disord. 2017; 209: 86–92. doi: 10.1016/j.jad.2016.11.019

33. Corradetti G., Violanti S., Au A., Sarraf D. Wide field retinal imaging and the detection of drug associated retinal toxicity. Int. J. Retina Vitreous. 2019; 5 (Suppl 1): 26. doi: 10.1186/s40942-019-0172-0

34. Scholz R.T.S., Sunness J.S. Dark adaptation abnormalities and recovery in acute thioridazine toxicity. Retin. Cases Brief Rep. 2014; 8 (1): 45–9. doi: 10.1097/ICB.0000000000000000

35. Faure C., Audo I., Zeitz C., Letessier J.B., Robert M.P. Aripiprazole-induced chorioretinopathy: multimodal imaging and electrophysiological features. Doc. Ophthalmol. 2015; 131 (1): 35–41. doi: 10.1007/s10633-015-9494-x

36. Sönmez I., Aykan U. Psychotropic Drugs and Ocular Side Effects. Turk. Oftalmoloiji Dergisi. 2013; 43: 270–7. doi: 10.4274/tjo.43.67944

37. Power W.J., Travers S.P., Mooney D.J. Welding arc maculopathy and fluphenazine. Br. J. Ophthalmol. 1991; 75 (7): 433–5. doi: 10.1136/bjo.75.7.433

38. Lee M.S., Fern A.I. Fluphenazine and its toxic maculopathy. Ophthalmic Res. 2004; 36 (4): 237–9. doi: 10.1159/000078784

39. Manousaridis K., Gupta R. Risperidone-related bilateral cystoid macular oedema. Graefes Arch. Clin. Exp. Ophthalmol. 2013; 251 (3): 1037–8. doi: 10.1007/s00417-012-2071-z

40. Kozlova A., McCanna C.D., Gelman R. Risperidone-related bilateral cystoid macular edema: a case report. J. Med. Case Rep. 2019; 13 (1): 59. doi: 10.1186/s13256-019-1978-y

41. Jain M. Quetiapine associated central serous chorioretinopathy: implicit role of serotonin and dopamine pathways. Indian J. Ophthalmol. 2019; 67 (2): 292–4. doi: 10.4103/ijo.IJO_929_18

42. Barow E., Schneider S.A., Bhatia K.P., Ganos C. Oculogyric crises: etiology, pathophysiology and therapeutic approaches. Parkinsonism Relat. Disord. 2017; 36: 3–9. doi: 10.1016/j.parkreldis.2016.11.012

43. Caffrey D., Sowden G.L. A missed case of lurasidone induced laryngospasm: A case study and overview of extrapyramidal symptom identification and treatment. Int. J. Psychiatry Med. 2021: 56 (2): 73–82. doi: 10.1177/0091217420943786

44. Mahal P., Suthar N., Nebhinani N. Spotlight on oculogyric crisis: A review. Indian J. Psychol. Med. 2021; 43 (1): 5–9. doi: 10.1177/0253717620942096

45. Tahir H., Daruwalla V. Phencyclidine induced oculogyric crisis responding well to conventional treatment. Case Rep. Emerg. Med. 2015; 8: 1–3. doi: 10.1155/2015/506301

46. Uchida H., Suzuki T., Yamazawa R., et al. Reducing the dose of antipsychotic agents ameliorates visual hypersensitivity attack: an ideal treatment option in terms of the adverse effect. J. Clin. Psychopharmacol. 2006; 26 (1): 50–5. doi: 10.1097/01.jcp.0000195384.04008.25

47. Ceylan E., Ozer M.D., Yilmaz Y.C., et al. The ocular surface side effects of an anti-psychotic drug, clozapine. Cutan. Ocul. Toxicol. 2016; 35 (1): 62–6. doi: 10.3109/15569527.2015.1018387

48. de Oliveira R.C., Wilson S.E. Practical guidance for the use of cyclosporine ophthalmic solutions in the management of dry eye disease. Clin. Ophthalmol. 2019; 13: 1115–22. doi: 10.2147/OPTH.S184412

49. Cumurcu T., Cumurcu B.E., Yesil B., Gunduz A. Aripiprazole-induced transient myopia. North Clin. Istanb. 2019; 7 (5): 516–8. doi: 10.14744/nci.2019.65625

50. Praveen Kumar K.V., Chiranjeevi P., Alam M.S. Aripiprazole-induced transient myopia: A rare entity. Indian J. Ophthalmol. 2018; 66 (1): 130–1. doi: 10.4103/ijo.IJO_907_16

51. Karadağ H., Acar M., Özdel K. Aripiprazole induced acute transient bilateral myopia: a case report. Balkan Med. J. 2015; 32 (2): 230–2. doi: 10.5152/balkanmedj.2015.15292

52. Nair A.G., Nair A.G., George R.J., Biswas J., Gandhi R.A. Aripiprazole induced transient myopia: a case report and review of literature. Cutan. Ocul. Toxicol. 2012; 31 (1): 74–6. doi: 10.3109/15569527.2011.603106

53. Selvi Y., Atli A., Aydin A., Yener H.I. Aripiprazole-related acute transient myopia and diplopia: a case report. J. Clin. Psychopharmacol. 2011; 31 (2): 249–50. doi: 10.1097/JCP.0b013e3182103493


Review

For citations:


Panov A.A., Petukhova A.A., Malygin Ya.V., Tsygankov B.D., Kazanfarova M.A. Adverse ocular effects of neuroleptic therapy: semiotics, pathogenesis and treatment. Russian Ophthalmological Journal. 2021;14(4):172-178. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-4-172-178

Views: 2333


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)