Preview

Russian Ophthalmological Journal

Advanced search

MicroRNA - biomarker of aggressiveness of choroidal melanoma

https://doi.org/10.21516/2072-0076-2022-15-1-7-12

Abstract

Almost 50 % of microRNAs (a family of small noncoding RNAs) are associated with the regions of the genome responsible for the development of tumors. These microRNAs play the role of oncogenes or tumor suppressor genes. In 2008, there were reports of the possibility of using microRNA as a predictive biomarker of the metastatic risk of uveal melanoma. Initially, microRNAs were investigated in melanoma samples; later, the possibility of using blood plasma for these purposes was shown.
Purpose: to study the character of expression of miRNA- 146a, miRNA-155, miRNA-223, miRNA-126, miRNA-27b in the blood plasma of patients with choroidal melanoma (CM) and determine their significance in predicting possible hematogenous metastases.

Material and methods. The study included 84 patients with CM aged 35–86 (ave 63.4 ± 1.2 yrs). The thickness of the CM varied in the range of 0.77–17.19 mm (ave 7.21 ± 0.43 mm). The control group consisted of 28 volunteers aged 45-78 (62.90 ± 1.42 yrs). MicroRNA expression levels were determined by quantitative PCR.
Results. An increase in the expression level of miRNA-155, miRNA-146a, miRNA-126, miRNA-223, and miRNA-27b in blood plasma in all 84 patients with CM was revealed.
Conclusion. The study of miRNA levels (miRNA-146, miRNA-155, miRNA-223, miRNA-126 and miRNA-27b) in the blood plasma of patients with CM can be used both to confirm the diagnosis of CM in difficult diagnostic cases and to determine the aggressiveness of the course tumor and prediction of metastasis.

About the Authors

A. F. Brovkina
Russian Medical Academy of Continuous Professional Education; Botkin Hospital
Russian Federation

Alevtina F. Brovkina - Academician of RAS, Dr. of Med. Sci., professor, professor at the department of ophthalmology, ophthalmologist at the oncology department

2/1, Barrikadnaya st., Moscow, 123995

5, 2nd Botkinsky proezd, Moscow, 125284



N. D. Tsybikova
Russian Medical Academy of Continuous Professional Education; Botkin Hospital
Russian Federation

Natalia D. Tsybikova - PhD student, department of ophthalmology, ophthalmologist at the polyclinic department no. 2

2/1, Barrikadnaya st., Moscow, 123995

5, 2nd Botkinsky proezd, Moscow, 125284

 



References

1. Carvajal R.D., Schwartz G.K., Tezel T., et al. Metastatic disease from uveal melanoma: treatment options and future prospects. Br. J. Ophthalmol. 2017; 101 (1): 38–44. doi: 10.1136/bjophthalmol-2016-309034

2. Maheshwari A., Finger P.T. Cancers of the eye. Cancer Metastasis Rev. 2018; 37 (4): 677–90. doi: 10.1007/s10555-018-9762-9

3. Helgadottir H., Höiom V. The genetics of uveal melanoma: current insights. Appl. Clin. Genet. 2016; 9: 147–55. doi:10.2147/TACG.S69210

4. Virgili G., Gatta G., Ciccolallo L., et al. EUROCARE Working Group. Incidence of uveal melanoma in Europe. Ophthalmology. 2007; 114 (12): 2309–15. doi:10.1016/j.ophtha.2007.01.032

5. Park S.J., Oh C.M., Kim B.W., et al. Nationwide incidence of Ocular Melanoma in South Korea by Using the National Cancer Registry Database (1999–2011). Invest. Ophthalmol. Vis. Sci. 2015; 56 (8): 4719–24. doi:10.1167/iovs.15-16532

6. Singh N., Seregard S, Singh A.D. Uveal melanoma: epidemiologic aspects. In: Damato B., Singh A. (eds). Clinical Ophthalmic Oncology. Springer, Cham: 53-69. https://doi.org/10.1007/978-3-030-17879-6_4

7. Brovkina A.F. Local treatment of choroidal melanoma: possibilities and limitations. Vestnik oftal’mologii. 2018; 134 (4): 52–60 (in Russian). doi: 10.17116/oftalma201813404152

8. Damato E.M., Damato B.E. Detection and time to treatment of uveal melanoma in the United Kingdom: аn evaluation of 2,384 patients. Ophthalmology. 2012; 119 (8):1 582–1589. doi:10.1016/j.ophtha.2012.01.048

9. Singh A.D., Turell M.E., Topham A.K. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011; 118 (9): 1881–5. doi: 10.1016/j.ophtha.2011.01.040

10. AJCC Ophthalmic Oncology Task Force. International Validation of the American Joint Committee on Cancer’s 7th Edition Classification of Uveal Melanoma. JAMA Ophthalmol. 2015; 133 (4): 376–83. doi: 10.1001/jamaophthalmol. 2014.5395

11. Nezu N., Goto H., Umazume K., et al. Clinical analysis of uveal melanoma. Nippon Ganka Gakkai Zasshi. 2017; 121 (5): 413–8.

12. Bellerive C., Ouellet E., Kamaya A., Singh A.D. Liver imaging techniques: recognition of uveal melanoma metastases. Ocul. Oncol. Pathol. 2018; 4 (4): 254–60. doi: 10.1159/000485424

13. Grishina E.E., Stepanova E.A., Bogatyrev A.M. The diagnosis of metastatic uveal melanoma. What has changed during 10 years? Almanac of Clinical Medicine. 2019; 47 (8): 712–20 (in Russian). doi: 10.18786/2072-0505-2019-47-050

14. Diener-West M., Reynolds S.M., Agugliaro D.J., et al. Collaborative Ocular Melanoma Study Group. Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. Arch. Ophthalmol. 2005; 123 (12): 1639–43. doi: 10.1001/archopht.123.12.1639

15. Peng Y., Croce C.M. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016; 1: 15004. doi:10.1038/sigtrans.2015.4

16. Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019; 47 (1): 155–62. doi: 10.1093/nar/gky1141

17. Worley L.A., Long M.D., Onken M.D., Harbour J.W. Micro-RNAs associated with metastasis in uveal melanoma identified by multiplexed microarray profiling. Melanoma Research. 2008; 18 (3): 184–90. doi: 10.1097/CMR.0b013e3282feeac6

18. Radhakrishnan A., Badhrinarayanan N., Biswas J., Krishnakumar S. Analysis of chromosomal aberration (1, 3, and 8) and association of microRNAs in uveal melanoma. Mol. Vis. 2009; 15: 2146–54. PMID: 19898689

19. Aughton K., Kalirai H., Coupland S.E. MicroRNAs and uveal melanoma: understanding the diverse role of these small molecular regulators. Int. J. Mol Sci. 2020; 21 (16): 5648. doi:10.3390/ijms21165648

20. Achberger S., Aldrich W., Tubbs R., et al. Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. Mol. Immunol. 2014; 58 (2): 182–86. doi:10.1016/j.molimm.2013.11.018

21. Li Z., Yu X., Shen J., Jiang Y. MicroRNA dysregulation in uveal melanoma: а new player enters the game. Oncotarget. 2015; 6 (7): 4562–8. doi:10.8632/оncotarget.2923

22. Triozzi P.L., Achberger S., Aldrich W., et al. Association of tumor and plasma microRNA expression with tumor monosomy-3 in patients with uveal melanoma. Clin. Epigenetics. 2016; 8: 80. doi: 10.1186/s13148-016-0243-0

23. Russo A., Caltabiano R., Longo A., et al. Increased Levels of miRNA-146a in serum and histologic samples of patients with uveal melanoma. Front Pharmacol. 2016; 7: 424. doi: 10.3389/fphar.2016.00424

24. Rodríguez M.F.B., Fernandez M.B., Baameiro L.N., et al. Blood biomarkers of uveal melanoma: current perspectives. Clin. Ophthalmol. 2020; 14: 157–69. doi: 10.2147/OPTH.S199064

25. Iorio M.V., Croce C.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 2017; 9 (6): 852–8. doi: 10.15252/emmm.201707779

26. Zhang R., Zhang L.J., Yang M.L., et al. Potential role of microRNA-223-3p in the tumor genesis of hepatocellular carcinoma: A comprehensive study based on data mining and bioinformatics. Mol. Med. Rep. 2018; 17 (2): 2211–28. doi: 10.3892/mmr.2017.8167

27. Bao J., Yu Y., Chen J., et al. MiR-126 negatively regulates PLK-4 to impact the development of hepatocellular carcinoma via ATR/CHEK1 pathway. Cell Death Dis. 2018; 9 (10): 1045. doi: 10.1038/s41419-018-1020-0

28. Miguel D., de Frutos-Baraja J.M., López-Lara F., et al. Radiobiological doses, tumor, and treatment features influence on local control, enucleation rates, and survival after episcleral brachytherapy. A 20-year retrospective analysis from a single-institution: part I. J. Contemp. Brachytherapy. 2018; 10 (4): 337–46. doi: 10.5114/jcb.2018.77849

29. Wu T., Lin Y., Xie Z. MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma. Biol. Res. 2018; 51 (1): 13. doi:10.1186/s40659-018-0162у


Review

For citations:


Brovkina A.F., Tsybikova N.D. MicroRNA - biomarker of aggressiveness of choroidal melanoma. Russian Ophthalmological Journal. 2022;15(1):7-12. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-1-7-12

Views: 1055


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)