Preview

Russian Ophthalmological Journal

Advanced search

Changes of high order aberrations after photorefractive keratectomy (PRK) and FemtoLASIK

https://doi.org/10.21516/2072-0076-2022-15-1-99-104

Abstract

Purpose: a comparative study of corneal and total wavefront aberration changes after traditional PRK and FemtoLASIK.
Material and methods. Corneal and total wavefront aberrations were studied on OPD-Scan III aberrometer (Nidek) in 63 patients (126 eyes) with moderate and high myopia before and after FemtoLASIK (Ziemer + Nidek-Quest, Japan) (44 patients, 88 eyes) and PRK (Nidek-Quest, Japan) (19 patients, 38 eyes). Spherical aberration (SA) was considered as the sum Z4 + Z8 + Z12.
Results. The corneal asphericity coefficient Q changed to positive values after both types of intervention. Corneal RMS HOA increased in both Femto and PRK groups. Corneal Tilt 1 increased after FemtoLASIK and moved to negative values after PRK, corneal tilt 2 moved to negative values after Femto and to positive values after PRK. The vertical trefoil showed no significant change in the Femto group and dropped in the PRK group. The vertical and horizontal coma (coma 7, coma 8) changed synchronously. Corneal SA increased after Femtolasic, and became negative after PRK. The total aberrations showed a lesser change and the changes were not synchronized with the corneal ones: in particular, the RMS HOA fell from 0.28 ± 0.05 to 0.19 ± 0.05 in the Femto group, while the corneal RMS increased significantly. In the PRK group, the corneal RMS HOA showed some increase, but it was much less than corneal RMS: from 0.25 ± 0.07 to 0.62 ± 0.02 μm. The total SA increased from 0.11±0.03 to 0.27±0.02 in the Femto group and showed an insignificant drop from 0.09±0.03 to 0.03 ± 0.01, while remaining positive in the PRK group.
Conclusions. The changes of the wavefront after FemtoLASIK and PRK are both significant and different. The revealed differences in the changes of corneal aberrations correspond to different profiles of the anterior surface of the cornea formed after FemtoLASIC and PRK. The internal optics of the eye partially compensates the corneal aberrations induced by excimer laser surgery.

About the Authors

N. V. Khodzhabekyan
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Narine V. Khodzhabekyan - Cand. of Med. Sci., leading researcher of the department of refraction pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



A. T. Khandzhyan
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Anush T. Khandzhyan - Cand. of Med. Sci., senior researcher, department of retinal and optic nerve pathology

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



E. P. Tarutta
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Elena P. Tarutta - Dr. of Med. Sci., professor, head of the department of refraction pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



S. G. Harutyunyan
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Sona G. Harutyunyan - Cand. of Med. Sci., ophthalmologist, department of refraction pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



M. D. Sengaeva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Maria D. Sengaeva - PhD student, department of retinal and optic nerve pathology

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Oshika T., Klyce S.D., Applegate R.A., Howland H.C., El Danasoury M.A. Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am. J. Ophthalmol. 1999 Jan; 127 (1): 1–7. doi: 10.1016/s0002-9394(98)00288-8

2. Moreno-Barriuso E., Lloves J.M., Marcos S., et al. Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing. Invest. Ophthalmol. Vis. Sci. 2001; 42 (6): 1396–1403. doi: 10.1016/s0002-9394(98)00288-8

3. Baek T., Lee K., Kagaya F., et al. Factors affecting the forward shift of posterior corneal surface after laser in situ keratomileusis. Ophthalmology. 2001; 108 (2): 317–20. doi: 10.1016/s0161-6420(00)00502-9

4. Calossi A. Corneal asphericity and spherical aberrations. J. of Refract. Surg. 2007; 23 (5): 505–14. doi: 10.3928/1081-597X-20070501-15

5. Applegate R.A., Marsack J.D., Ramos R., Sarver E.J. Interaction between aberrations to improve or reduce visual performance. J. Cataract. Refract. Surg. 2003; 29 (8): 1487–95. doi: 10.1016/s0886-3350(03)00334-1

6. Holladay J.T., Janes J.A. Topographic changes in corneal asphericity and effective optical zone after laser in situ keratomileusis. J. Сataract. Refract. Surg. 2012; 28 (6): 942–47. doi: 10.1016/s0886-3350(02)01324-x

7. Mrochen M., Kaemmerer M., Seiler T. Wavefront-guided laser in situ keratomileusis: early results in three eyes. J. Refract. Surg. 2000; 16 (2): 116–21. doi: 10.3928/1081-597X-20000301-03

8. Mrochen M., Kaemmerer M., Seiler T. Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery. J. Cataract. Refract Surg. 2001; 27 (2): 201–7. doi: 10.1016/s0886-3350(00)00827-0

9. Rana M., Gebril A., El-Lakwa A.F., Zaky M. Corneal wavefront-guided versus aberration free transepithelial photorefractive keratectomy in patients with myopia with high pre-existing corneal higher order aberrations. Menoufia medical Journal. 2019; 32 (2): 683–9.

10. Nuijts R.M., Nabar V., Hament W.J., Eggink F.A. Wavefront-guided versus standard laser in situ keratomileusis to correct low to moderate myopia. J. Cataract. Refract. Surg. 2002; 28 (11): 1907–13. doi: 10.1016/s0886-3350(02)01511-0

11. Phusitphoykai N., Tungsiripat T., Siriboonkoom J., Vongthongsri A. Comparison of conventional versus wavefront-guided laser in situ keratomileusis in the same patient. J. Refract. Surg. 2003; 19 (2 Suppl.): 217–20. doi: 10.3928/1081-597X-20030302-08

12. Du C.X., Shen Y., Wang Y. Comparison of high order aberration after conventional and customized ablation in myopic LASIK in different eyes of the same patient. J. Zhejiang Univ. Sci. 2007; 8 (3): 177–80. doi: 10.1631/jzus.2007.B0177

13. Kosaki R. Maeda N., Hayashi H., Fujikado T., Okamoto S. Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia. J. Refract. Surg. 2009; 25 (4): 331–8. doi: 10.3928/1081597X-20090401-06

14. Agarwal S., Thornell E., Hodge C., Sutton G., Hughes P. Visual outcomes and higher order aberrations following LASIK on eyes with low myopia and astigmatism. Open Ophthalmology Journal. 2018; 12 (1): 84–93. doi: 10.2174/1874364101812010084

15. Cox I., MacRae S., Porter J., et al. What causes the increase in higher order aberrations after LASIK? The cut, the flap manipulation and/or the ablation. Invest. Ophthalmol. Vis. Sci. 2004; 45: 211.

16. Chen X., Wang Y., Zhang J., et al. Comparison of ocular higher-order aberrations after SMILE and wavefront-guided femtosecond LASIK for myopia. BMC Ophthalmol. 2017; 17 (1): 42. doi: 10.1186/s12886-017-0431-5

17. Guirao A., Williams D.R., Cox I.G. Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order abberations. J. Opt. Soc. Am A Opt. Image Sci. Vis. 2001; 18 (5): 1003–15. doi: 10.1364/josaa.18.001003

18. Padmanabhan P., Mrochen M., Vismanathan D., Basuthkar S. Wavefront aberrations in eyes with decentered ablations. J. Cataract. Refract. Surg. 2009; 35: 695–702. doi: 10.1016/j.jcrs.2008.12.022

19. Ganesh S., Gupta R. Comparison of visual and refractive outcomes following femtosecond laser-assisted LASIK with SMILE in patients with myopia or myopic astigmatism. J. Refract. Surg. 2014; 30 (9): 590–6. doi: 10.3928/1081597X-20140814-02

20. Lin F., Xu Y., Yang Y. Comparison of the visual results after SMILE and femtosecond laser-assisted LASIK for myopia. J. Refract. Surg. 2014; 30 (4): 248–54. doi: 10.3928/1081597X-20140320-03


Review

For citations:


Khodzhabekyan N.V., Khandzhyan A.T., Tarutta E.P., Harutyunyan S.G., Sengaeva M.D. Changes of high order aberrations after photorefractive keratectomy (PRK) and FemtoLASIK. Russian Ophthalmological Journal. 2022;15(1):99-104. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-1-99-104

Views: 911


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)