Determination of the optical density of macular pigment: clinical value
https://doi.org/10.21516/2072-0076-2022-15-1-128-132
Abstract
The density of macular pigment in the central retina is the total concentration of lutein, zeaxanthin and meso-zeaxanthin. Normally, the average value of the optical density of macular pigment can vary significantly as it depends on the person's lifestyle, the total amount of pigment in the body, nutrition, gender, age, as well as concomitant diseases such as diabetes, obesity, arterial hypertension. Differences in the level of optical density of macular pigment between different countries were revealed and it was showed that this parameter drops in cases of retinal pathology, cataract, glaucoma, myopia, macular degeneration, or diabetic macular edema. The level of macular pigment may be considered as a significant diagnostic criterion in many ophthalmic pathologies, so any changes of this parameter require attentive consideration.
About the Authors
M. M. BikbovRussian Federation
Mukharram M. Bikbov - Dr. of Med. Sci, professor, director
90, Pushkin St., Ufa, Bashkortostan, 450008
E. L. Usubov
Russian Federation
Emin L. Usubov - Cand. of Med. Sci., head of corneal and lens surgery unit
90, Pushkin St., Ufa, Bashkortostan, 450008
N. B. Zaynullina
Russian Federation
Nelly B. Zaynullina - Cand. of Med. Sci., senior researcher of the department of corneal and lens surgery
90, Pushkin St., Ufa, Bashkortostan, 450008
E. N. Matyukhina
Russian Federation
Ekaterina N. Matyukhina - ophthalmologist of the adult consultative polyclinic department
90, Pushkin St., Ufa, Bashkortostan, 450008
I. P. Ponomarev
Russian Federation
Ildar P. Ponomarev - ophthalmologist of the #1 microsurgery department
90, Pushkin St., Ufa, Bashkortostan, 450008
References
1. Bikbov M., Zainullin R., Gilmanshin T., et al. Prevalence and associated factors of age-related macular degeneration in a Russian Population: The Ural Eye and Medical Study. Am. Journal of Ophthalmology. 2020; 210: 146–57. doi: 10.1016/j.ajo.2019.10.004
2. World report on vision World Health Organization. 2019. Available at: https:// www.who.int/docs/default-source/documents/publications/world-visionreport-accessible.pdf.
3. Komar B., Georgia Rauscher F., Wiedemann R., Dawczynski J. Macular Pigment Optical Density Measurements by One-Wavelength Reflection Photometry-Influence of Cataract Surgery on the Measurement Results. Graefes Arch. Clin. Exp. Ophthalmol. 2014; 252 (11): 1717–27. doi: 10.1007/s00417-014-2627-1
4. Badimova A.V. Epidemiological features of eye disorders morbidity and disability in russia and abroad. Nauka molodyh (Eruditio Juvenium). 2020; 8 (2): 261–8 (in Russian). doi:10.23888/HMJ202082261-268
5. Wald G. Human vision and the spectrum. Science. 1945; 101: 653–8. doi: 10.1126/science.101.2635.653
6. Bressler N.M., Bressler S.B., Childs A.L. Surgery for hemorrhagic choroidalneovascular lesions of age-related macular degeneration. Ophthalmology. 2004; 111 (11): 1993–2006. doi: 10.1016/j.ophtha.2004.07.023
7. Bikbov M.M., Fajzrahmanov R.R. Influence of antivasoprolipherative therapy on morphological and functional features classic choroidal neovascularization in patients with age-related macular degeneration. Vestnik Rossijskoj voenno-medicinskoj akademii. 2016; 2 (54): 111–5 (in Russian).
8. Bone R.A., Landrum J.T., Friedes L.M., et al. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res. 1997; 64 (2): 211–8. doi: 10.1006/exer.1996.0210
9. Trieschmann M., van Kuijk F.J., Alexander R., et al. Macular pigment in the human retina: histological evaluation of localization and distribution. Eye (Lond). 2008; 22 (1): 132–7. doi: 10.1038/sj.eye.6702780
10. Snodderly D.M., Brown P.K., Delori F.C., Auran J.D. The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest Ophthalmol. Vis. Sci. 1984; 25 (6): 660–73.
11. Vorob'eva I.V., Dement'eva A.A., Dgebuadze A. The effects of antioxidants, angioprotective agents, and vitamins on retina in complex retinal diseases. RMZh “Klinicheskaja Oftal'mologija”. 2020; 2: 104–9 (in Russian). doi: 10.32364/2311-7729-2020-20-2-104-109
12. Landrum J.T., Bone R.A., Moore L.L., Gomez C.M. Analysis of zeaxanthin distribution within individual human retinas. Methods Enzymol. 1999; 299: 457–67. doi: 10.1016/s0076-6879(99)99043-2.
13. Bone R.A., Landrum J.T., Fernandez L., Tarsis S.L. Analysis of the Macular Pigment by HPLC:Retinal Distribution and Age Study. Invest. Ophthalmol. Vis. Sci. 1988; 29: 843–9.
14. Bone R.A., Landrum J.T., Hime G.W., Cains A., Zamor J. Stereochemistry of the human macular carotenoids. Invest. Ophthalmol. Vis. Sci. 1993; 34: 2033–40.
15. Bone R.A., Landrum J.T., Tarsis S.L. Preliminary identification of the human macular pigment. Vision Res. 1985; 25: 1531–5. doi: 10.1016/0042-6989(85)90123-3
16. Zak P.P., Bukhtiyarov I.V., Prokof'ev A.B., et al. Specification of reflectometric measurement complex to evaluate optic density of macular pigments and concentration of phototoxic chemicals in retina. Meditsina truda i promyshlennaya ekologiya. 2009; 7: 31–6 (in Russian).
17. Chucair A.J., Rotstein N.P., Sangiovanni J.P., et al. Lutein and zeaxanthin protect photore-ceptors from apoptosis induced by oxidative stress: relation with docosahexaenoic acid. Invest Ophthalmol. Vis. Sci. 2007; 48 (11): 5168–77. doi: 10.1167/iovs.07-0037
18. Bone R.A., Landrum J.T., Cains A. Optical density spectra of the macular pigment in vivo and in vitro. Vision Res. 1992; 32 (1): 105–10. doi: 10.1016/0042-6989(92)90118-3
19. Beatty S., Koh H.H., Phil M., Henson D., Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 2000; 45: 115–34. doi: 10.1016/s0039-6257(00)00140-5
20. Bone R.A., Landrum J.T. Macular pigment in Henle fiber membranes a model for Haidinger's brushes. Vision Res. 1984; 24: 103–8. doi: 10.1016/0042-6989(84)90094-4
21. Stahl W. Macular carotenoids: lutein and zeaxanthin. Dev. Ophthalmol. 2005; 38: 70–88. doi: 10.1159/000082768
22. Nolan J.M., Meagher K., Kashani S., Beatty S. What is meso-zeaxanthin, and where does it come from? Eye (Lond). 2013; 27 (8): 899–905. doi: 10.1038/eye.2013.98
23. Müller H. [Daily intake of carotenoids (carotenes and xanthophylls) from total diet and the carotenoid content of selected vegetables and fuit]. Z. Ernahrungswiss. 1996; 35 (1): 45–50 [in German]. doi: 10.1007/BF01612027
24. Pipis A., Touliou E., Augustin A.J. Macular pigment optical density in a Central European population. Ophthalmic. Surg. Lasers Imaging Retina. 2013; 44 (3): 260–7. doi: 10.3928/23258160-20130503-09
25. Werner J.S., Donnelly S.K., Kliegl R. Aging and human macular pigment density: Appended with translations from the work of Max Schultze and Ewald Hering. Vision Res. 1987; 27 (2): 257–68. doi: 10.1016/0042-6989(87)90188-x
26. Bikbov M.M., Zajnullin R.M., Fajzrahmanov R.R. Macular pigment optical density alteration as an indicator of diabetic macular edema development. Sovremennye tekhnologii v medicine. 2015; 7 (3): 73–6 (in Russian).
27. Bikbov M.M., Fayzrakhmanov R.R., Zainullin R.M., Kalanov M.R., Zaynetdinov A.F. Features in dynamics of macular pigment status and central retinal sensitivity in vitreoretinal surgery for diabetic macular edema. Fyodorov Journal of Ophthalmic Surgery. 2018; (1): 26–30 (in Russian)]. https://doi.org/10.25276/0235-4160-2018-1-26-30
28. Zykova A.V., Jushkova I.S., Rzaev V.M., Eskina Je.N. Possibilities for early diagnosis and monitoring of age-related macular degeneration. Vestnik oftal'mologii. 2014; 3: 60–6 (in Russian).
29. Eskina E.N., Zykova A.V. Early glaucoma risk factors in myopia. Ophthalmology in Russia. 2014; 11 (2): 59–63 (in Russian)]. https://doi.org/10.18008/1816-5095-2014-2-59-63
30. Igras E., Loughman J., Ratzlaff M., et al. Evidence of lower macular pigment optical density in chronic open angle glaucoma. Br. J.Ophthalmol. 2013; 97 (8): 994–8. doi: 10.1136/bjophthalmol-2013-30315
31. Dennison J., Beatty S., O Regan G., et al. Impact of macular pigment on visual performance. Actual.Optometry. 2013; 2: 28–33.
32. Nolan J.M., Loughman J., Akkali M.C., et al. The impact of macular pigment augmentation on visual performance in normal subjects: COMPASS. Vision Research. 2011; 51 (5): 459–69. doi: 10.1016/j.visres.2010.12.016
33. Loughman J., Davison P.A., Nolan J.M. Macular pigment and its contribution to visual performance and experience. Optometry. 2010; 3 (2): 74–90.
34. Siah, W.F.; Loughman, J.; O’Brien C. Lower macular pigment optical Density in foveal-involved glaucoma. Ophthalmology.2015; 122 (10): 2029–37. doi: 10.1016/j.ophtha.2015.06.028
35. Eskina E.N., Egorov E.A., Belogurova A.V., Gvetadze А.А., Stepanova М.А. The role of the macular pigment optical density measurement in the diagnosis of eye diseases. RMZh “Klinicheskaja Oftal'mologija”. 2016; 4: 197–200 (in Russian).
36. Yu J., Johnson E.J., Shang F., et al. Measurement of macular pigment optical density in a healthy Chinese population sample. Invest Ophthalmol. Vis. Sci. 2012; 53 (4): 2106–11. doi: 10.1167/iovs.11-8518
37. Abell R.G., Hewitt A.W., Andric М., et al. The use of heterochromatic flicker photometry to determine macular pigment optical density in a healthy Australian population. Graefes Arch. Clin. Exp. Ophthalmol. 2014; 252 (3): 417–21. doi: 10.1007/s00417-013-2554-6
38. Khomjakova E.N., Sergushev S.G., Rjabceva A.A., Andryukhina O.M. Detection of optical density of the macular pigment in secondary gestation. Al'manakh klinicheskoj mediciny. 2013; 29: 14–22 (in Russian).
39. Neelam K., Ho H., Yip C.C., Li W., Eong Kah-Guan Au. The spatial profile of macular pigment in subjects from a Singapore Chinese population. Invest Ophthalmol. Vis. Sci. 2014; 55 (4): 2376–83. doi: 10.1167/iovs.13-13470
40. Howells O., Eperjesi F., Bartlett H. Macular pigment optical density in young adults of South Asian origin. Invest Ophthalmol. Vis. Sci. 2013; 54 (4): 2711–9. doi: 10.1167/iovs.12-10957
41. Raman R., Rajan R., Biswas S., Vaitheeswaran K., Sharma T. Macular pigment optical density in a South Indian population. Invest Ophthalmol. Vis. Sci. 2011; 52 (11): 7910–6. doi: 10.1167/iovs.11-7636
42. Nagai N., Asato T., Minami S., et al. Correlation between macular pigment optical density and neural thickness and volume of the retina. Nutrients. 2020; 12 (4): 888. doi: 10.3390/nu12040888
43. Ren X.T., Gu H., Han X., et al. Measurement of macular pigment optical density among healthy Chinese people and patients with early-stage age-related macular degeneration. Int. J. Ophthalmol. 2015; 8 (6): 1190–5. doi: 10.3980/j.issn.2222-3959.2015.06.20
44. Bikbov M., Gilmanshin T., Zainullin R., et al. Prevalence and associated factors of diabetic retinopathy in a Russian Population. The Ural eye and medical study. Diabetes Metab. Syndr. Obes. 2021 Dec 3; 14: 4723–34. doi: 10.2147/DMSO.S340211.
45. Cennamo G., Lanni V., Abbate R., et al. The relationship between macular pigment and vessel density in patients with type 1 diabetes mellitus. Ophthalmic. Res. 2019; 61 (1): 19–25. doi: 10.1159/000492897
46. Bikbov M.M., Fayzrakhmanov R.R., Yarmuhametova A.L., Zainullin R.M. Analysis of the central zone of the retina in patients with diabetic macular edema. Diabetes mellitus. 2015; 18 (4): 99–104 (in Russian)]. https://doi.org/10.14341/DM7126
47. Tong N., Zhang W., Zhang Z., et al. Inverse relationship between macular pigment optical density and axial length in Chinese subjects with myopia. Graefes Arch. Clin. Exp. Ophthalmol. 2013; 251 (6): 1495–500. doi: 10.1007/s00417-012-2225-z
48. Czepita M., Karczewicz D., Safranow K., Czepita D. Macular pigment optical density and ocular pulse amplitude in subjects with different axial lengths and refractive errors. Med. Sci. Monit. 2015; 21: 1716–20. doi: 10.12659/MSM.893225
49. Demirel S., Bilici S., Batıoglu F., Ozmert E. The effect of age and cataract surgery on macular pigment optic density: a cross-sectional, comparative study. Graefes Arch. Clin. Exp. Ophthalmol. 2014; 252 (2): 213–8. doi: 10.1007/s00417-013-2424-2
50. Obana A., Gohto Y., TanitoM., et al. Effect of age and other factors on macular pigment optical density measured with resonance Raman spectroscopy Graefes. Arch. Clin. Exp. Ophthalmol. 2014; 252 (8): 1221–8. doi: 10.1007/s00417-014-2574-x
51. Sasamoto Y., Gomi F., Sawa M., et al. Effect of cataract in evaluation of macular pigment optical density by autofluorescence spectrometry. Invest Ophthalmol. Vis. Sci. 2011; 52 (2): 927–32. doi: 10.1167/iovs.10-5664
52. Obana A., Gohto Y., Sasano H., et al. Grade of cataract and its influence on measurement of macular pigment optical density using autofluorescence imaging. Invest Ophthalmol. Vis. Sci. 2018; 59 (7): 3011–19. doi: 10.1167/iovs.17-23699
53. Lavrik N.S., Moussa M., Gurgy Ju. M. Research of the relationship between the values of macular pigment optical density index and visuals performance after phacoemulsification. Oftal'mologija. Vostochnaja Evropa. 2014; 4 (23): 76–81 (in Russian).
54. Verdina T., Date P., Benatti C., et al. Evaluation of macular pigment optical density following femtosecond laser-assisted cataract surgery. Clinical. Ophthalmology. 2019; 13: 821–8. doi: 10.2147/OPTH.S196061
Review
For citations:
Bikbov M.M., Usubov E.L., Zaynullina N.B., Matyukhina E.N., Ponomarev I.P. Determination of the optical density of macular pigment: clinical value. Russian Ophthalmological Journal. 2022;15(1):128-132. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-1-128-132