Cataract surgery in patients with age-related macular degeneration: questions and controversies
https://doi.org/10.21516/2072-0076-2022-15-1-133-139
Abstract
The issue of surgical treatment of cataracts in patients with age-related macular degeneration (AMD) is important due to a high incidence of the comorbid course of the two diseases. The effectiveness of phacoemulsification of cataract (FEC) in patients with AMD, its influence on the course of AMD, the characteristics of visual functions, and the quality of life of these patients are still controversial. The study of risk factors for the development of choroidal neovascularization, the influence of the characteristics of surgical treatment and the number of injections on the incidence of intraoperative complications seems to be quite relevant for understanding the possible mechanisms of AMD progression after FEC. This study is instrumental in the development of measures preventing the reactivation of the pathological process, improving visual functions and the quality of life of patients after surgical treatment of cataracts. The range of contraindications for FEC in patients with neovascular AMD is rather limited , and continuation of anti-VEGF therapy stops active exudation and increases visual acuity in patients with neovascular AMD. Maintaining functional parameters, improving peripheral vision, contrast sensitivity, improving the quality of OCT imaging provides both significant benefits for the patient and boosts the control of the disease, increasing the accuracy of monitoring.
About the Authors
E. I. DmitrievaRussian Federation
Elena I. Dmitrieva - assistant professor of chair of ophthalmology1
52, Krasny Prospect, Novosibirsk, 630091
A. Zh. Fursova
Russian Federation
Anzhella Zh. Fursova - Dr. of Med. Sci., head of chair of ophthalmology,
head of ophthalmology department
52, Krasny Prospect, Novosibirsk, 630091
130, Nemirovich-Danchenko St., Novosibirsk, 630087
I. F. Nikulich
Russian Federation
Ida F. Niculich - Cand. of Med. Sci., assistant professor, chair of ophthalmology, ophthalmologist
52, Krasny Prospect, Novosibirsk, 630091
130, Nemirovich-Danchenko St., Novosibirsk, 630087
T. J. Kim
Russian Federation
Tatyana J. Kim - Cand. of Med. Sci., assistant professor, chair of ophthalmology
52, Krasny Prospect, Novosibirsk, 630091
Yu. A. Gamza
Russian Federation
Julia A. Gamza - Cand. of Med. Sci., assistant professor, chair of ophthalmology, ophthalmologist
52, Krasny Prospect, Novosibirsk, 630091
130, Nemirovich-Danchenko St., Novosibirsk, 630087
References
1. Pascolini D., Mariotti S.P. Global estimates of visual impairment. 2010. Br. J. Ophthalmol. 2012; 96 (5): 614–8. https://doi.org/10.1136/bjophthalmol-2011-300539
2. Ioshin I.E., Tolchinskaya A.I., Bagirov A.M. The state of the retina of the macular region after phacoemulsification of cataracts in two eyes according to optical coherence tomography. Modern technologies in ophthalmology. 2019; 1: 71–3 (in Russian)]. https://doi.org/10.25276/2312-4911-2019-1-71-73
3. Liu I.Y., White L., LaCroix A.Z. The association of age-related macular degeneration and lens opacities in the aged. Am. J. Public. Health. 1989; 79 (6): 765–9. https://doi.org/10.2105/ajph.79.6.765
4. Cugati S., Mitchell P., Rochtchina E., et al. Cataract surgery and the 10-year incidence of age-related maculopathy: the Blue Mountains Eye Study. Ophthalmology. 2006; 113 (11): 2020–5. https://doi.org/10.1016/j.ophtha.2006.05.047
5. Pollack A., Marcovich A., Bukelman A., et al. Age-related macular degeneration after extracapsular cataract extraction with intraocular lens implantation. Ophthalmology. 1996; 103 (10): 1546–54. https://doi.org/10.1016/s0161-6420(96)30464-8
6. Wang J.J., Klein R., Smith W., et al. Cataract surgery and the 5-year incidence of late-stage age-related maculopathy: pooled findings from the Beaver Dam and Blue Mountains eye studies. Ophthalmology. 2003; 110 (10): 1960–7. https://doi.org/10.1016/s0161-6420(03)00816-9
7. Freeman E.E., Munoz B., West S.K., et al. Is there an association between cataract surgery and age-related macular degeneration? Data from three population-based studies. Am. J. Ophthalmol. 2003; 135 (6): 849–56. https://doi.org/10.1016/s0002-9394(02)02253-5
8. Klein R., Klein B.E., Wong T.Y., et al. The association of cataract and cataract surgery with the long-term incidence of age-related maculopathy: the Beaver Dam eye study. Arch. Ophthalmol. 2002; 120 (11): 1551–8. https://doi.org/10.1001/archopht.120.11.1551
9. Ferris F.L., Davis M.D., Clemons T.E., et al. Age-Related Eye Disease Study (AREDS) Research Group. A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch. Ophthalmol. 2005; 123 (11): 1570–4. https://doi.org/10.1001/archopht.123.11.1570
10. Ho J.D., Xirasagar S., Kao L.T., et al. Neovascular age-related macular degeneration is associated with cataract surgery. Acta Ophthalmol. 2018; 96 (2): e213–7. https://doi.org/10.1111/aos.13511
11. Cheng C.Y., Yamashiro K., Chen L.J., et al. New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nat Commun. 2015; 6: 6063. https://doi.org/10.1038/ncomms7063
12. Kaiserman I., Kaiserman N., Elhayany A., et al. Cataract surgery is associated with a higher rate of photodynamic therapy for age-related macular degeneration. Ophthalmology. 2007; 114 (2): 278–82. https://doi.org/10.1016/j.ophtha.2006.10.019
13. Smith B.T., Belani S., Ho A.C. Light energy, cataract surgery, and progression of age-related macular degeneration. Curr. Opin. Ophthalmol. 2005; 16 (3): 166–9. https://doi.org/10.1097/01.icu.0000163030.33401.3d
14. Mainster M.A. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. Br. J. Ophthalmol. 2006; 90 (6): 784–92. doi: 10.1136/bjo.2005.086553
15. Kleinmann G., Hoffman P., Schechtman E., et al. Microscope-induced retinal phototoxicity in cataract surgery of short duration. Ophthalmology. 2002; 109 (2): 334–8. https://doi.org/10.1016/s0161-6420(01)00924
16. Baatz H., Darawsha R., Ackermann H., et al. Phacoemulsification does not induce neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2008; 49 (3): 1079–83. https://doi.org/10.1167/iovs.07-0557
17. Donoso L.A., Kim D., Frost A., et al. The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2006; 51 (2): 137–52. https://doi.org/10.1016/j.survophthal.2005.12.001
18. Miyake K., Ibaraki N. Prostaglandins and cystoid macular edema. Surv. Ophthalmol. 2002; 47 (1): 203–18. https://doi.org/10.1016/s0039-6257(02)00294-1
19. Lobo C.L., Faria P.M., Soares M.A., et al. Macular alterations after smallincision cataract surgery. J. Cataract. Refract. Surg. 2004; 30 (4): 752–60. https://doi.org/10.1016/S0886-3350(03)00582-0
20. Yılmaz T., Karci A.A., Yilmaz İ., et al. Long-Term Changes in subfoveal choroidal thickness after cataract surgery. Med. Sci. Monit. 2016; 22: 1566-70. https://doi.org/10.12659/msm.898714
21. Noda Y., Ogawa A., Toyama T.U., et al. Long-term increase in subfoveal choroidal thickness after surgery for senile cataracts. Am. J. Ophthalmol. 2014; 158 (3): 455–59. doi: 10.1016/j.ajo.2014.05.016
22. Pierru A., Carles M., Gastaud P., et al. Measurement of subfoveal choroidal thickness after cataract surgery in enhanced depth imaging optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2014; 55 (8): 4967–74.
23. Ohsugi H., Ikuno Y., Ohara Z., et al. Changes in choroidal thickness after cataract surgery. J. Cataract Refract. Surg. 2014; 40 (2): 184–91. doi: 10.1016/j.jcrs.2013.07.036
24. Falcao M.S., Goncalves N.M., Freitas-Costa P., et al. Choroidal and macular thickness changes induced by cataract surgery. Clin. Ophthalmol. 2014; 8: 55–60 doi: 10.2147/OPTH.S53989
25. Liu Y., Cai Q. Does cataract surgery improve the progression of age-related macular degeneration? A Meta-Analysis. J. Ophthalmol. 2020; 2020: 7863987. https://doi.org/10.1155/2020/7863987
26. Pilotto E., Leonardi F., Stefanon G., et al. Early retinal and choroidal OCT and OCT angiography signs of inflammation after uncomplicated cataract surgery. Br. J. Ophthalmol. 2019; 103 (7): 1001–7. https://doi.org/10.1136/bjophthalmol-2018-312461
27. Nagy Z.Z., Ecsedy M., Kovács I., et al. Macular morphology assessed by optical coherence tomography image segmentation after femtosecond laser-assisted and standard cataract surgery. J. Cataract Refract. Surg. 2012; 38 (6): 941–6. https://doi.org/10.1016/j.jcrs.2012.02.031
28. Weill Y., Hanhart J., Zadok D., et al. Patient management modifications in cataract surgery candidates following incorporation of routine preoperative macular optical coherence tomography. J. Cataract. Refract. Surg. 2021; 47 (1): 78–82. https://doi.org/10.1097/j.jcrs.0000000000000389
29. Zhao Z., Wen W., Jiang C., et al. Changes in macular vasculature after uncomplicated phacoemulsification surgery: Optical coherence tomography angiography study. J. Cataract. Refract. Surg. 2018; 44 (4): 453–8. https://doi.org/10.1016/j.jcrs.2018.02.014
30. Jia X., Wei Y., Song H. Optical coherence tomography angiography evaluation of the effects of phacoemulsification cataract surgery on macular hemodynamics in Chinese normal eyes. International Ophthalmology. 2021; 41 (12): 4175–85. doi:10.1007/s10792-021-01987-8
31. Wang Z., Wang E., Chen Y. Transient reduction in macular deep capillary density on optical coherence tomography angiography after phacoemulsification surgery in diabetic patients. BMC Ophthalmol. 2020; 20 (1): 335. https://doi.org/10.1186/s12886-020-01605-8
32. Rosenfeld P.J., Shapiro H., Ehrlich J.S., et al. MARINA and ANCHOR Study Groups. Cataract surgery in ranibizumab-treated patients with neovascular agerelated macular degeneration from the phase 3 ANCHOR and MARINA trials. Am. J. Ophthalmol. 2011; 152 (5): 793–8. https://doi.org/10.1016/j.ajo.2011.04.025
33. Hooper C.Y., Lamoureux E.L., Lim L., et al. Cataract surgery in high-risk age-related macular degeneration: a randomized controlled trial. Clin. Exp. Ophthalmol. 2009; 37 (6): 570–6. https://doi.org/10.1111/j.1442-9071.2009.02095.x
34. Lundström M., Brege K.G., Florén I., et al. Cataract surgery and quality of life in patients with age related macular degeneration. Br. J. Ophthalmol. 2002; 86 (12): 1330–5. https://doi.org/10.1136/bjo.86.12.1330
35. Teh B.L., Megaw R., Borooah S., et al. Optimizing cataract surgery in patients with age-related macular degeneration. Surv. Ophthalmol. 2017; 62 (3): 346–56. https://doi.org/10.1016/j.survophthal.2016.12.003
36. Casparis H., Lindsley K., Kuo I.C., et al. Surgery for cataracts in people with age-related macular degeneration. Cochrane Database Syst. Rev. 2012; 6 (6): CD006757. https://doi.org/10.1002/14651858.CD006757.pub3
37. Qian C.X., Young L.H. The impact of cataract surgery on AMD development and progression. Semin. Ophthalmol. 2014; 29 (5–6): 301–11. https://doi.org/10.3109/08820538.2014.962166
38. Hogg H.D.J., Chung N., Reed J., et al. An observational clinical study of the influence of phacoemulsification on choroidal neovascular membrane activity in age related macular degeneration. Eye (Lond). 2021 Jun 25 https://doi.org/10.1038/s41433-021-01653-4
39. Kuznetsov A.A., Tur E.V., Zurochka A.V., Rykun V.S. Efficacy of aflibercept in patients with neovascular age-related macular degeneration when combined with cataract surgery. Russian ophthalmological journal. 2017; 10 (4): 20–8 (in Russian)]. https://doi.org/10.21516/2072-0076-2017-10-4-20-28
40. Daien V., Nguyen V., Morlet N., et al. Fight Retinal Blindness! Study Group. Outcomes and predictive factors after cataract surgery in patients with neovascular age-related macular degeneration. The Fight Retinal Blindness! Project. Am. J. Ophthalmol. 2018; 190: 50–7. https://doi.org/10.1016/j.ajo.2018.03.012
41. Furino C., Ferrara A., Cardascia N., et al. Combined cataract extraction and intravitreal bevacizumab in eyes with choroidal neovascularization resulting from age-related macular degeneration. J. Cataract. Refract. Surg. 2009; 35 (9): 1518–22. https://doi.org/10.1016/j.jcrs.2009.04.032
42. Tabandeh H., Chaudhry N.A., Boyer D.S., et al. Outcomes of cataract surgery in patients with neovascular age-related macular degeneration in the era of anti-vascular endothelial growth factor therapy. J. Cataract. Refract. Surg. 2012; 38(4): 677-82. https://doi.org/10.1016/j.jcrs.2011.10.036
43. Saraf S.S., Ryu C.L., Ober M.D. The effects of cataract surgery on patients with wet macular degeneration. Am. J. Ophthalmol. 2015; 160 (3): 487–92; e1. https://doi.org/10.1016/j.ajo.2015.06.006
44. Sül S., Karalezli A., Karabulut M. First-year outcomes of cataract surgery combined with intravitreal ranibizumab injection in wet age-related macular degeneration. Turk. J. Ophthalmol. 2019; 49 (1): 15–19. https://doi.org/10.4274/tjo.galenos.2018.76429
45. Bhandari S., Biechl A.C., Nguyen V., et al. Outcomes of cataract surgery in eyes with diabetic macular oedema: data from the Fight Retinal Blindness! Registry. Clin. Exp. Ophthalmol. 2020; 48 (4): 462–9. https://doi.org/10.1111/ceo.13707
46. Choi E.Y., Kim T.Y., Lee C.S. Predictive factors for long-term outcomes of cataract surgery in patients receiving active treatment for neovascular age-related macular degeneration. C.S.J. Clin. Med. 2021; 10 (14): 3124. doi: 10.3390/jcm10143124.
47. Sparrow J.M., Taylor H., Qureshi K., et al. UK EPR user group. The Cataract National Dataset electronic multi-centre audit of 55,567 operations: risk indicators for monocular visual acuity outcomes. Eye (Lond). 2012; 26 (6): 821–6. https://doi.org/10.1038/eye.2012.51
48. Buchan J.C., Donachie P.H.J., Cassels-Brown A., et al. The Royal College of Ophthalmologists' National Ophthalmology Database study of cataract surgery: Report 7, immediate sequential bilateral cataract surgery in the UK: Current practice and patient selection. Eye (Lond). 2020; 34 (10): 1866–74. https://doi.org/10.1038/s41433-019-0761-z
49. Alio J.L., Plaza-Puche A.B., Férnandez-Buenaga R., et al. Multifocal intraocular lenses: An overview. Surv. Ophthalmol. 2017; 62 (5): 611–34. https://doi.org/10.1016/j.survophthal.2017.03.005
50. Kernt M., Walch A., Neubauer A.S., et al. Filtering blue light reduces lightinduced oxidative stress, senescence and accumulation of extracellular matrix proteins in human retinal pigment epithelium cells. Clin. Exp. Ophthalmol. 2012; 40 (1): e87–97. https://doi.org/10.1111/j.1442-9071.2011.02620.x
51. Pipis A., Touliou E., Pillunat L.E., et al. Effect of the blue filter intraocular lens on the progression of geographic atrophy. Eur. J. Ophthalmol. 2015; 25 (2): 128–33. https://doi.org/10.5301/ejo.5000520
52. Aarnisalo E.A. Effects of yellow filter glasses on the results of photopic and scotopic photometry. Am. J. Ophthalmol. 1988; 105 (4): 408–11. https://doi.org/10.1016/0002-9394(88)90307-8
53. Westborg I., Albrecht S., Granstam E., et al. Treatment of age-related macular degeneration after cataract surgery: a study from the Swedish National Cataract and Macula Registers. Acta Ophthalmol. 2021; 99 (1): e124–9. https://doi.org/10.1111/aos.14519
54. Nagai H., Hirano Y., Yasukawa T., et al. Prevention of increased abnormal fundus autofluorescence with blue light-filtering intraocular lenses. J. Cataract. Refract. Surg. 2015; 41 (9): 1855–9. https://doi.org/10.1016/j.jcrs.2015.01.017
55. Lundström M., Barry P., Henry Y., et al. Visual outcome of cataract surgery; study from the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J. Cataract. Refract. Surg. 2013; 39 (5): 673–9. https://doi.org/10.1016/j.jcrs.2012.11.026
56. Ma Y., Huang J., Zhu B., et al. Cataract surgery in patients with bilateral advanced age-related macular degeneration: Measurement of visual acuity and quality of life. J. Cataract. Refract. Surg. 2015; 41 (6): 1248–55. https://doi.org/10.1016/j.jcrs.2014.09.046
57. Dag M.Y., Afrashi F., Nalcaci S., et al. The efficacy of “IOL-Vip Revolution” telescopic intraocular lens in age-related macular degeneration cases with senile cataract. Eur. J. Ophthalmol. 2019; 29 (6): 615–20. https://doi.org/10.1177/1120672118803831
Review
For citations:
Dmitrieva E.I., Fursova A.Zh., Nikulich I.F., Kim T.J., Gamza Yu.A. Cataract surgery in patients with age-related macular degeneration: questions and controversies. Russian Ophthalmological Journal. 2022;15(1):133-139. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-1-133-139