Mathematical modeling of fluid movement inside the eyeball during intravitreal injection
https://doi.org/10.21516/2072-0076-2022-15-2-37-41
Abstract
Intravitreal injections show an avalanche-like growth the world over.
Purposes: 1) create a mathematical model of the eyeball and fluid movement inside the eye, assuming the simplified structure of the vitreous body (without tanks); 2) estimate the time span when the drug substance remains in the cavity of the vitreous body until it is completely washed out, depending on the injection site; 3) observe and evaluate the path of drug movement in the vitreous body cavity; 4) evaluate the variation of time when the drug is located in the vitreous body cavity, depending on the presence or absence of complete detachment of the vitreous body.
Results. If the drug is injected closer to the center of the eyeball, the time when it is located in the vitreous is increased as compared to parietal injection. With full vitreous body detachment, the location time of the drug increases as compared to its normal location, which favorably affects the prolongation of the therapeutic effect.
Conclusion. As this is a pilot study, many parameters are approximate, so the results obtained cannot be mechanically extrapolated to the live human eye subjected to intravitreal injections, due to the complexity of the processes occurring in eyeball.
About the Authors
D. V. LipatovRussian Federation
Dmitry V. Lipatov, Dr. of Med. Sci., professor, head of the department
department of diabetic retinopathy and ophthalmic surgery
117036
11, Dmitry Ulyanov St.
Moscow
S. A. Skladchikov
Russian Federation
Sergey A. Skladchikov, Cand. of Phys.-Math. Sci., research associate
chair of computational mathematics and cybernetics
119991
1, Bldg. 52, Leninskie Gory, GSP-1
Moscow
N. P. Savenkova
Russian Federation
Nadezhda P. Savenkova, Dr. of Phys.-Math. Sci., principal researcher
faculty of computational mathematics and cybernetics
119991
1, Bldg. 52, Leninskie Gory, GSP-1
Moscow
V. V. Novoderezkin
Russian Federation
Vladimir V. Novoderezkin, Cand. of Med. Sci., ophthalmologist
111539
23, Veshnyakovskaya St.
Moscow
Ph. I. Vysikailo
Russian Federation
Philip I. Vysikailo, Dr. of Phys.-Math. Sci., professor
chair of theoretical physics
141014
24, Vera Voloshina St.
Moscow region
Mytishchi
References
1. Алексеев И. Б. Стекловидное тело. Строение, патология и методы хирургического лечения (обзор литературы) / И. Б. Алексеев [и др.] // Новости глаукомы. – 2015. – 33 (1): 69–73. [Alekseev I. B., Belkin V. E., Samoylenko A. I., et al. The vitreous body. Structure, pathology and methods of surgical treatment (literature review). Glaucoma News. 2015; 33 (1): 69–73 (in Russian)].
2. Махачева З. А. Анатомия стекловидного тела: учебное пособие для системы послевузовского профессионального образования врачей / З. А. Махачева. – Москва: Руспринт; 2006. [Makhacheva Z. A. Anatomy of the vitreous body: a textbook for the system of postgraduate professional education of doctors. Moscow: Rusprint; 2006 (in Russian)].
3. Старков Г. Л. Патология стекловидного тела / Г. Л. Старков. – Москва: Медицина, 1967. [Starkov G. L. Pathology of the vitreous body. Moscow: Meditsina; 1967 (in Russian)].
4. Jongebloed W. L., Worst J. G. F. The cisternal anatomy of the vitreous body. Doc. Ophthalmol. Sep-Oct 1987; 67 (1–2): 183–96. doi: 10.1007/BF00142712
5. Stephen J. R., Schachat A. P., Wilkinson C. P., et al. Retina (5-th Edition). 2013; New York: Elsevier. 1: 2568.
6. Worst J. G. F. The bursa intravitrealis premacularis: new developments in ophthalmology. In: Documenta Ophthalmologica Proceeding Series. 1975: 275–9.
7. Кислицына Н. М. Анатомо-топографические особенности передних кортикальных слоев стекловидного тела / Н. М. Кислицына, С. В. Новиков, С. В. Колесник // Современные технологии в офтальмологии. – 2014. – 1: 60–1. [Kislitsyna N. M., Novikov S. V., Kolesnik S. V. Anatomical and topographic features of the anterior cortical layers of the vitreous body. Modern technologies in ophthalmology. 2014; 1: 60–1 (in Russian)].
8. Worst J. G. F., Los L. I. Cisternal Anatomy of the Vitreous. Kugler Pub. Amsterdam, 1995.
9. Yusupaliev U., Savenkova N., Skladchikov S., et al. Vortex rings and plasma toroidal vortices in homogeneous unbounded media. ii. the study of vortex formation process. Bulletin of Lebedev Physics Institute. 2011; 38: 275–82.
10. Yusupaliev U., Savenkova N., Skladchikov S., et al. Computer simulation of vortex self-maintenance and amplification. Bulletin of Moscow University. Physics. 2013; 68 (4): 317–9.
11. Yusupaliev U., Vinke E., Yusupaliev P. U., et al. Vortex rings and plasma toroidal vortices in a homogeneous infinite medium. Bulletin of Lebedev Physics Institute. 2010; 37 (8): 227–33.
12. Anpilov S. V., Bychkov V. L., Savenkova N. P., et al. Gas dynamics of gatchinsky discharge plasmoid. In: 9th International Conference on Plasma Assisted Technologies (ICPAT-9). Saint-Petersburg. 2014; 1: 79–81.
13. Bychkov V. L., Anpilov S. V., Savenkova N. P. Gas dynamics modeling of a plasmoid created by the gatchina discharge. Russian Journal of Physical Chemistry. 2014; 8 (1): 50–5. https://doi.org/10.1134/S1990793114010102
Review
For citations:
Lipatov D.V., Skladchikov S.A., Savenkova N.P., Novoderezkin V.V., Vysikailo P.I. Mathematical modeling of fluid movement inside the eyeball during intravitreal injection. Russian Ophthalmological Journal. 2022;15(2):37-41. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-2-37-41