Optimization of diagnostics of retinopathy of prematurity stages based on the integration of clinical data using the Key to Diagnosis I software
https://doi.org/10.21516/2072-0076-2022-15-2-68-78
Abstract
Despite the improvement of algorithms of preterm infants’ management, methods for predicting, diagnosing and treating ROP remains a vital issue.
Purpose: to improve the diagnostics of retinopathy of prematurity based on the assessment of vascular system configuration, using Key to Diagnosis I software.
Material and methods. 279 patients with ROP were divided into 6 groups: group 1 included 152 patients (304 eyes) with stage I; group 2 — 45patients (90 eyes) with stage II; group 3 — 8patients (12 eyes) with stage III; group 4 — 7 patients (8 eyes) with stage IVA; group 5 — 7 patients (14 eyes) with posterior aggressive ROP; control group 6 — 60patients (120 eyes) diagnosed with immature retina who have no ROP signs. 28 eyes were analyzed using wide-field imaging, while 400 eyes were analyzed by separate images. The presence o f“mute” zones, macula localization, traction index of the macular zone (Tm), zone and span of pathological changes, fractal dimension (Df) and complexity of vascular system (СVS) were assessed on automatically created wide-field images, obtained by Ret-Cam Shuttle.
Results. We revealed strong correlation between Df and stages (p = 0.85, p = 0.01); moderate negative correlation of Тm and stages (p = 0.62, p = 0.01), except for posterior aggressive ROP; strong positive correlation between CVS and stages ( p = 0.91, p = 0.001). Diagnostic modules of the software have been developed to create wide-field fundus imaging in infants, localize the macula as a marker for morphometry, and isolate the vascular system using deep convolutional neural networks.
Conclusions. The developed algorithm for multivariate analysis of the retinal vascular system reduces the risks of subjective assessment of retinal changes.
About the Authors
O. A. PerervaRussian Federation
Oxana A. Pererva, ophthalmologist, postgraduate student
394036
10, Studencheskaya St.
Voronezh
M. A. Kovalevskaya
Russian Federation
Maria A. Kovalevskaya, Dr. of Med. Sci., professor, head of chair
chair of ophthalmology
394036
10, Studencheskaya St.
Voronezh
References
1. Blencowe H., Lawn J. E., Vazquez T., Fielder A., Gilbert C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatric research. 2013; 74 (1): 35–49. https://doi.org/10.1038/pr.2013.205
2. Терещенко А. В. Морфометрическое исследование состояния ретинальных сосудов на ранних стадиях ретинопатии недоношенных / А. В. Терещенко [и др.] // Офтальмология. – 2013. – 10 (3): 33–8. [Tereshchenko A. V., Bely Yu. A., Isaev S. V., Trifanenkova I. G., Yudina Yu. A. The morphometric study of retinal vessels in the early stages of retinopathy of prematurity. Ophthalmology. 2013; 10 (3): 33–8 (in Russian)].
3. Катаргина Л. А. Ангиотензин-II как пусковой фактор развития ретинопатии недоношенных / Л. А. Катаргина [и др.] // Офтальмология. – 2020. – 17 (4): 746–51. [Katargina L. A., Chesnokova N. B., Beznos O. V., Osipova N. A., Panova A. U. Angiotensin-II as a triggering factor in the development of retinopathy of prematurity. Ophthalmology. 2020; 17 (4): 746–51 (in Russian)]. https://doi.org/10.18008/1816-5095-2020-4-746-751
4. Scruggs B. A., Chan R. P., Kalpathy-Cramer J., Chiang M. F., Campbell J. P. Artificial intelligence in retinopathy of prematurity diagnosis. Trans. Vis. Sci. Technol. 2020; 9 (2): 5. https://doi.org/10.1167/tvst.9.2.5
5. Valikodath N., Cole E., Chiang M. F., Campbell J. P., Chan R. V. P. Imaging in retinopathy of prematurity. Asia Pac. J. Ophthalmol. (Phila). 2019; 8 (2): 178–86 https://doi.org/10.22608/APO.201963
6. Litjens G., Kooi T., Bejnordi B. E., et al. A survey on deep learning in medical image analysis. Medical image analysis. 2017; 42: 60-88. https://doi.org/10.1016/j.media.2017.07.005
7. Mandelbrot B. B., Passoja D. E., Paullay A. J. Fractal character of fracture surfaces of metals. Nature. 1984; 308 (5961): 721–2.
8. Vico P. G., Kyriacos S., Heymans O., Louryan S., Cartilie, L. Dynamic study of the extraembryonic vascular network of the chick embryo by fractal analysis. J. Theor. Biol. 1998; 195 (4): 525–32. doi: 10.1006/jtbi.1998.0810
9. Kovalevskaya M. A. Algorithm of improving image quality, diagnosis and morphometry at retinopathy of prematurity. EC Ophthalmology. J. Clin. Exp Ophthalmol. 2018; 9. doi: 10.4172/2155-9570-C2-082. Available at: https://www.longdom.org/conference-abstracts-files/2155-9570-C2-082-008.pdf (accessed 10 June 2022).
10. Kovalevskaya M. A., Pererva O. A. Multilateral analysis of retinal vascular system. Acta Scientific Ophthalmology. 2018; 1: 02–05. https://actascientific.com/ASOP/pdf/ASOP-01-0014.pdf
11. Ковалевская М. А. Способ определения стадии ретинопатии недоношенных / М. А. Ковалевская, О. А. Перерва. – Патент RU 2672924 от 16. 05. 2018. [Kovalevskaya M. A., Pererva O. A. Method for determining the stage of retinopathy of prematurity. Patent RU 2672924 dated 16. 05. 2018 (In Russian)].
12. Ковалевская М. А. Подходы к улучшению качества диагностики состояния глазного дна у пациентов с ретинопатией недоношенных с помощью RetCamShuttle / М. А. Ковалевская, Н. И. Пономарева, О. А. Перерва // Современные технологии в офтальмологии. – 2017. – 1: 130–2. [Kovalevskaya M. A., Ponomareva N. I., Pererva O. A. Approaches to improving the quality of diagnostics of the fundus condition in patients with retinopathy of prematurity using RetCamShuttle. Modern technologies in ophthalmology. 2017; 1: 130–2 (In Russian)].
13. Ковалевская М. А. Возможности ретинальной камеры в диагностике клинических проявлений ретинопатии недоношенных / М. А. Ковалевская, Н. И. Пономарева, О. А. Перерва // Медицинский альманах. – 2017. – 1: 46. [Kovalevskaya M. A., Ponomareva N. I., Pererva O. A. Possibilities of the retinal chamber in the diagnosis of clinical manifestations of retinopathy of prematurity. Medical almanac. 2017; 1: 46 (In Russian)]. https://doi.org/10.24412/Fg78loUnojc
14. Good W. V. on behalf of the Early Treatment for Retinopathy of Prematurity Cooperative Group. Final results of the Early Treatment for Retinopathy of Prematurity (ETROP) randomized trial. Transactions of the American Ophthalmological Society. 2004; 102: 233.
15. Воронцова Т. Н. Ретинопатия недоношенных, рубцовый период: клиническая классификация / Т. Н. Воронцова, Е. Е. Сомов, А. Ю. Рудник // Российская педиатрическая офтальмология. – 2007. – 4: 19–22. [Vorontsova T. N., Somov E. E., Rudnik A. Yu. Retinopathy of prematurity, cicatricial period: clinical classification. Russian pediatric ophthalmology. 2007; 4: 19–22 (in Russian)].
16. Ковалевская М. А. Способ определения локализации макулы при ретинопатии недоношенных (варианты) / М. А. Ковалевская [и др.] – Патент RU2645411C1 от 26. 04. 2017. [Kovalevskaya M. A., Tereshchenko A. V., Trifanenkova I. G., et al. Method for determining the localization of the macula in retinopathy of prematurity (options). Patent RU2645411C1 dated 04. 26. 2017 (in Russian)].
17. Терещенко А. В. Ретинопатия недоношенных. Патогенез, классификация, лечение задней агрессивной ретинопатии недоношенных. Обзор литературы / А. В. Терещенко [и др.] // Катарактальная и рефракционная хирургия. – 2010. – 10 (2): 8–16. [Tereshchenko A. V., Bely U. A., Tereshchenkova M. S., Trifanenkova I. G. Retinopathy of prematurity. Pathogenesis, classification, treatment of aggressive posterior retinopathy of prematurity. Literature review. Cataract and refractive surgery. 2010; 10 (2): 8–16 (in Russian)].
18. Lee T. Classification of ROP. Retinopathy of Prematurity. Springer, Cham, 2017; 13–8. https://doi.org/10.1007/978-3-319-52190-9_2
19. Strang N. C., Winn B., Bradley A. The role of neural and optical factors in limiting visual resolution in myopia. Vision Research. 1998; 38:1713–21.
20. Hill D. Retinal characteristics of myopic eyes in a semi-rural UK population. Diss. Aston University, 2019.
21. Krebs I., Brannath W., Glittenberg C., Zeiler F., Sebag J., Binder S. Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration? American journal of ophthalmology. 2007; 144 (5): 741–6. https://doi.org/10.1016/j.ajo.2007.07.024
22. Коголева Л. В. Результаты длительного наблюдения глубоко недоношенных детей с ретинопатией / Л. В. Коголева [и др.] // Вестник офтальмологии. – 2020. – 136 (5): 39–45. [Kogoleva L. V., Katargina L. A., Sudovskaya T. V., Kruglova T. B., Bobrovskaya Yu. A. Results of long-term observation of extremely premature babies with retinopathy. Vestnik oftalmologii. 2020; 136 (5): 39–45 (in Russian)]. https://doi.org/10.17116/oftalma202013605139
23. Sankar M. J., Sankar J., Chandra P. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database of Systematic Reviews. 2018; 1. https://doi.org/10.1002/14651858.CD009734.pub3
24. Coscas G., Lupidi M., Coscas F., et al. Optical coherence tomography angiography during follow-up: qualitative and quantitative analysis of mixed type I and II choroidal neovascularization after vascular endothelial growth factor trap therap. Ophthalmic research. 2015; 54 (2): 57–63. https://doi.org/10.1159/000433547
25. Kwinta P., Bik-Multanowsk, M., Mitkowska Z., Tomasi T., Pietrzyk J. J. The clinical role of vascular endothelial growth factor (VEGF) system in the pathogenesis of retinopathy of prematurity. Graefe's Archive for Clinical and Experimental Ophthalmology. 2008: 246 (10); 1467–75. https://doi.org/10.1007/s00417-008-0865-9
26. Катаргина Л. А. Новые возможности в ведении пациентов с ретинопатией недоношенных (обзор литературы и анализ собственных данных) / Л. А. Катаргина, Е. Н. Демченко // Российский офтальмологический журнал. – 2020; 13 (4): 70–4. [Katargina L. A., Demchenko E. N. New opportunities in the management of patients with retinopathy of prematurity (literature review and analysis of own data). Russian ophthalmological journal 2020; 13.4: 70–4 (in Russian)]. https://doi.org/10.21516/2072-0076-2020-13-4-70-74
27. Mao J., Luo Y., Liu L., et al. Automated diagnosis and quantitative analysis of plus disease in retinopathy of prematurity based on deep convolutional neural networks. Acta ophthalmologica. 2020; 98 (3): 339–45. https://doi.org/10.1111/aos.14264
28. Зуева М. В. Пластичность сетчатки при ретинопатии недоношенных и перспективы фототерапии / М. В. Зуева, Л. В. Коголева, Л. А. Катаргина // Российский офтальмологический журнал. – 2020. – 13 (1): 77–84. [Zueva M. V., Kogoleva L. V., Katargina L. A. Retinal plasticity in retinopathy of prematurity and the prospects for phototherapy. Russian ophthalmological journal. 2020; 13 (1): 77–84 (in Russian)]. URL: https://roj.igb.ru/jour/article/view/385
29. Ковалевская М. А. Универсальная платформа диагностики социально значимых заболеваний: ретинопатия недоношенных, диабетический макулярный отек, диабетическая ангиоретинопатия, возрастная макулярная дегенерация, окклюзия вен сетчатки, глаукома / М. А. Ковалевская, О. А. Перерва. – Заявка на патент РФ № 2020116745 от 10. 05. 2020. [Kovalevskaya M. A., Pererva O. A. Universal platform for diagnosing socially significant diseases: retinopathy of prematurity, diabetic macular edema, diabetic angioretinopathy, age-related macular degeneration, retinal vein occlusion, glaucoma. Application for patent RU No 2020116745, 10. 05. 2020 (in Russian)].
Review
For citations:
Pererva O.A., Kovalevskaya M.A. Optimization of diagnostics of retinopathy of prematurity stages based on the integration of clinical data using the Key to Diagnosis I software. Russian Ophthalmological Journal. 2022;15(2):68-78. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-2-68-78