Preview

Russian Ophthalmological Journal

Advanced search

Electroretinography and OCT angiography of the retina and optic nerve in retinitis pigmentosa

https://doi.org/10.21516/2072-0076-2017-10-3-22-28

Abstract

OCT angiography, an innovative noninvasive technique, allows a comprehensive assessment of eye vessels, separately for the choroidal and the retinal vasculature. Purpose: to assess microcirculation changes in the macular and peripapillary areas of the retina in retinitis pigmentosa (RP) by OCT angiography in comparison with electrogenesis parameters of the macular area of the retina and the cone system. Material and methods. The results of microcirculation studies of the fovea and the optic disk were analyzed for 14 patients with RP aged 5 to 76 (mean age 26.9 ± 17.6 years). OCT angiography was performed with Optovue RX Avanti (Optovue, USA). Рarafoveal vessel density, blood flow index, blood flow area, the size of the foveal avascular zone (FAZ) in the superficial and deep capillary plexuses and the flow area in retinal peripapillary capillaries (RPC) were assessed. All patients were tested by electroretinography using the MBN electroretinograph (Russia), including the general electroretingram (ERG), the maximal ERG, 30 Hz flicker ERG, and the macular ERG (MERG). Results. Blood flow deficit in superficial and deep capillary plexuses and in peripapillary capillaries (decreased parafoveal vessel density, vascular index, flow area) was associated with the reduction of a- and b-wave amplitudes of MERG and the increase of the implicit time. The enlargement of FAZ found in the deep capillary plexus (DCP) (p < 0.0001).and the normal size of FAZ in superficial capillary plexus (SCP) may be due to the difference in their structures. Conclusion. The blood flow deficit, which is more pronounced in DCP than in SCP in the macula of RP patients, is associated with the reduction of a- and b-wave amplitudes of MERG and the increase of the implicit time Russian ophthalmological journal. 2017; 10 (3): 22-28. doi: 10.21516/2072-0076-2017-10-3-22-28 // (in Russian). For citations: Zolnikova I.V., Levina D.V., Okhotsimskaya T.D., et al. Electroretinography and OCT angiography of the retina and optic nerve in retinitis pigmentosa. Russian ophthalmological journal. 2017; 10 (3): 22-28. doi: 10.21516/2072-0076-2017-10-3-22-28 (in Russian).

About the Authors

V. . Zolnikova
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


D. V. Levina
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


T. D. Okhotsimskaya
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


V. A. Fadeeva
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


I. V. Egorova
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


E. V. Rogatina
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


E. A. Eremeeva
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


O. N. Demenkova
Children’s medical center, President of Russian Federation Administration of the affairs
Russian Federation


S. Yu. Rogova
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


References

1. Шамшинова А.М. Пигментный ретинит или тапеторетинальная абиотрофия. В кн.: Шамшинова А.М., ред. Наследственные и врожденные заболевания сетчатки и зрительного нерва. Москва: Медицина; 2001: 134-51.

2. Шамшинова А.М., Зольникова И.В. Молекулярные основы наследственных заболеваний сетчатки. Медицинская генетика. 2004; 4: 160-9.

3. Зольникова И.В. Мультифокальная и хроматическая макулярная электроретинограмма в диагностике пигментного ретинита. Вестник новых медицинских технологий. 2009; 16(3): 171-4.

4. Зольникова И.В. Современные электрофизиологические и психофизические методы диагностики при дистрофиях сетчатки (обзор литературы). Офтальмохирургия и терапия. 2004; 2: 30-40.

5. Киселева Т.Н., Зольникова И.В., Деменкова О.Н. и др. Особенности гемодинамики глаза и электрогенеза сетчатки при пигментном ретините. Вестник офтальмологии. 2015; 131(5): 14-9. doi: 10.17116/oftalma2015131514-19

6. Kim D.Y., Fingler J., Zawadzki R.J.M., et al. Optical imaging of the chorioretinal vasculature in the living human eye. Proc Natl Acad Sci. 2013; 110:14354-9. doi: 10.1073/pnas.1307315110

7. Jia J., Bailey S., Hwang T., et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA. 2015; 112(18): 2395-402. doi: 10.1073/pnas.1500185112.

8. Samara W., Say E., Khoc., et al. Correlation of foveal avascular zone with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015; 35(10):1-8. doi: 10.1097/IAE.0000000000000847.

9. Spaide R.F., Klancnik J.M, Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015; 133: 45-50. 10.1001/jamaophthalmol.2014.3616

10. Shahlaee A., Samara W.A, Hsu J., et al. In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016; 165: 39-46. doi: 10.1016/j.ajo.2016.02.018

11. Нероев В.В., Охоцимская Т.Д., Фадеева В.А. ОКТ-ангиография в диагностике диабетической ретинопатии. «Точка зрения. Восток-Запад». 2016; 1: 111-3.

12. Нероев В.В., Охоцимская Т.Д., Фадеева В.А. Визуализация аваскулярной зоны при диабетической ретинопатии методом ОКТ-ангиографии. Инфекция, иммунитет, фармакология. 2016; 5: 138-40.

13. Нероев В.В., Охоцимская Т.Д., Фадеева В.А. Оценка микрососудистых изменений сетчатки при сахарном диабете методом ОКТ-ангиографии. Российский офтальмологический журнал. 2017; 10(2):40-6.

14. de Carlo T.E., Romano A., Waheed N.K., Duker J.S. A review of optical coherence tomography angiography (OCTA). International Journal of Retina and Vitreous. 2015; 1:5 doi: 10.1186/s40942-015-0005-8

15. Parodi M., Cicinelli M.,Rabiolo A., et al. Vessel density analysis in patients with retinitis pigmentosa by means of optical coherence tomography angiography. Br. J. Ophthalmol. Online First: 24 June 2016 doi:10.1136/bjophthalmol-2016-308925.

16. Parodi M., Cicinelli M.V., Rabiolo A., et al. Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography. Br J Ophthalmol. 2016 Sep 14. pii: bjophthalmol-2016-308869. doi: 10.1136/bjophthalmol-2016-308869.

17. Шамшинова А.М. Электроретинография в офтальмологии. Москва: Медицина, МБН; 2009.

18. Savastano M.C., Lumbroso B., Rispoli M., et al. In vivo characterization of retinal vascularization morphology using Optical Coherence Tomography Angiography. Retina. 2015; 35(11):2196-203. doi: 10.1097/IAE.0000000000000635.

19. Savastano M.C., Rispoli M., Lumbroso B. Retinal normal vascularization. In: Lumbroso B., Huang D., Chen J.C., et al, eds. Clinical OCT Angiography Atlas. London: Jaypee Brothers Medical Publishers; 2015: 3-5.

20. Bonnin S., Mané V., Couturier A., et al. New insight into the macular deep vascular plexus imaged by optical coherence tomography angiogrаphy. Retina. 2015; 35(11): 2347-52. doi: 10.1097/IAE.0000000000000839.

21. Pierro L., Battaglia Parodi M., Rabiolo A., et al. Optical Coherence Tomography Angiography of miscellaneous retinal disease. Dev. Ophthalmol. 2016; 56:174-80. 10.1159/000442810.


Review

For citations:


Zolnikova V., Levina D.V., Okhotsimskaya T.D., Fadeeva V.A., Egorova I.V., Rogatina E.V., Eremeeva E.A., Demenkova O.N., Rogova S.Yu. Electroretinography and OCT angiography of the retina and optic nerve in retinitis pigmentosa. Russian Ophthalmological Journal. 2017;10(3):22-28. (In Russ.) https://doi.org/10.21516/2072-0076-2017-10-3-22-28

Views: 1868


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)