Preview

Russian Ophthalmological Journal

Advanced search

Impact of fractal visual stimulation on healthy rabbit retina: functional, morphometric and biochemical studies

https://doi.org/10.21516/2072-0076-2022-15-3-99-111

Abstract

Purpose: to investigate the changes of electrophysiological activity of healthy rabbit retina occurring in courses of fractal stimulation (FS) of varied duration in order to obtain new scientific data on how fractal visual signals of low intensity, self-similar with respect to time, affect the retina.

Material and methods. 12 healthy Chinchilla rabbits (24 eyes), were examined before and after FS courses that lasted 1, 4 or 12 weeks, using electroretinographic (ERG), morphometric (optical coherence tomography) and biochemical methods (detection of dopamine in the tear). For FS of rabbits, a device with an LED emitter was developed, which generates nonlinear brightness fluctuation based on the Weierstrass — Mandelbrot fractal functions. The choice of fractal signal parameters used in the work was substantiated. Pattern ERG and ganzfeld ERG were registered according to ISCEV standards; also, photopic flicker ERG was recorded at 8.3, 10, 12, and 24 Hz.

Results. No negative effects of a 12-month FS course on the activity and morphology of the retina, or on dopaminergic processes in the eye of a healthy animal were found, which confirms the safety of using low-intensity FS in the clinic. A statistically significant increase in the amplitude of low-frequency flicker ERGs, a shortening of peak latency, and an increase in the amplitude of the b-wave of the scotopic and photopic ERGs was noted.

Conclusion. To assess possible therapeutic effects of FS, we need to continue the investigation on animal models and human patients with retinal pathology. Considering the changes of retinal activity as revealed in the present paper, we recommend the duration of FS courses from 1 week to 1 month for future studies.

About the Authors

V. V. Neroev
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Vladimir V. Neroev — academician of the RAS, Dr. of Med. Sci., professor, head of the department of pathology of the retina and optic nerve, director.

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



M. V. Zueva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Marina V. Zueva — Dr. Biol. Sci., professor, head of the department of clinical physiology of vision named after S.V. Kravkov.

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



N. V. Neroeva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Nataliya V. Neroeva — Cand. of Med. Sci., ophthalmologist, ORCID: 0000-0003-1038-2746.

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



D. V. Fadeev
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Denis V. Fadeev — researcher, scientific experimental center.

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



I. V. Tsapenko
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Irina V. Tsapenko — Cand. of Biol. Sci., senior researcher, head of the department of clinical physiology of vision named after S.V. Kravkov.

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



T. D. Okhotsimskaya
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Tatiana D. Okhotsimskaya — Cand. of Med. Sci., оphthalmologist, department of pathology of the retina and optic nerve.

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



V. I. Kotelin
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Vladislav I. Kotelin — researcher, department of clinical physiology of vision named after S.V. Kravkov.

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



T. A. Pavlenko
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Tatiana A. Pavlenko — Cand. of Med. Sci., head of the department of pathophysiology and biochemistry, clinical diagnostic laboratory.

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



N. B. Chesnokova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Natalya B. Chesnokova — Dr. of Biol. Sci., professor, chief specialist, department of pathophysiology and biochemistry.

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Serruya M.D., Kahana M.J. Techniques and devices to restore cognition. Behav. Brain Res. 2008; 192 (2): 149. doi: 10.1016/j.bbr.2008.04.007

2. Krawinkel L.A., Engel A.K., Hummel F.C. Modulating pathological oscillations by rhythmic non-invasive brain stimulation — a therapeutic concept? Front. Syst. Neurosci. 2015; 9; Art 33. doi:10.3389/fnsys.2015.00033

3. Sabel B.A., Flammer J., Merabet L.B. Residual vision activation and the brain-eyevascular triad: dysregulation, plasticity and restoration in low vision and blindness — a review. Restor. Neurol. Neurosci. 2018 36: 767–91. doi: 10.3233/RNN-180880

4. Lipsitz L.A., Goldberger A.L. Loss of “complexity” and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992 Apr 1; 267 (13): 1806–9. PMID: 1482430.

5. Hausdorff J.M., Peng C.K., Ladin Z., Wei J.Y., Goldberger A.L. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl Physiol. 1995; 78: 349. doi: 10.1152/jappl.1995.78.1.349

6. Hausdorff J.M., Mitchell S.L., Firtion R., et al. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Applied Physiol. 1997; 82 (1): 262–9. doi: 10.1152/jappl.1997.82.1.262

7. Goldberger A.L., Amaral L.A.N., Hausdorff J.M., et al. Fractal dynamics in physiology: Alterations with disease and aging. Proc Nat Acad Sci USA. 2002; 99: 2466–72. https://doi.org/10.1073/pnas.012579499

8. Peng C.K., Mietus J.E., Liu Y., et al. Quantifying fractal dynamics of human respiration: age and gender effects. Ann Biomed Eng. 2002; 30: 683–692. doi: 10.1114/1.1481053

9. Dauwels J., Srinivasan K., Reddy M.R., et al. Slowing and loss of complexity in Alzheimer’s EEG: Two sides of the same coin? Int. J. Alzheim Dis. 2011; 2011, Art ID 539621. https://doi.org/10.4061/2011/539621

10. Takahashi A.C., Porta A., Melo R.C., et al. Aging reduces complexity of heart rate variability assessed by conditional entropy and symbolic analysis. Intern. Emerg. Med. 2012; 7: 229–35. doi: 10.1007/s11739-011-0512-z

11. Sleimen-Malkoun R., Temprado J.J., Hong S.L. Aging induced loss of complexity and dedifferentiation: consequences for coordination dynamics within and between brain, muscular and behavioral levels. Front. Aging Neurosci. 2014; 27; 6: 140. doi: 10.3389/fnagi.2014.00140

12. Gilbert C.D., Li W. Adult visual cortical plasticity. Neuron. 2012; 75 (2): 250–64. doi:10.1016/j.neuron.2012.06.030

13. Zueva M.V. Dynamic fractal flickering as a tool in research of non-linear dynamics of the evoked activity of a visual system and the possible basis for new diagnostics and treatment of neurodegenerative diseases of the retina and brain. World Appl. Sci. J. 2013; 27 (4): 462–8. doi: 10.5829/idosi.wasj.2013.27.04.13657

14. Zueva M.V. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scaleinvariance and fractal complexity of the visible world. Front. Aging Neurosci. 2015; 7: 135. https://doi.org/10.3389/fnagi.2015.00135

15. Zueva M.V. Technologies of nonlinear stimulation: role in the treatment of diseases of the brain and the potential applications in healthy individuals. Human Physiology. 2018; 44 (3): 289–99]. doi: 10.1134/S0362119718030180

16. Zueva M.V., Kovalevskaya M.A., Donkareva O.V., et al. Fractal phototherapy in neuroprotection of glaucoma. Ophthalmology in Russia. 2019; 16 (3): 317–28 (in Russian). https://doi.org/10.18008/1816-5095-2019-3-317-328

17. Francardo V., Schmitz Y., Sulzer D., Cenci M.A. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol. 2017; 298: 137–47. https://doi.org/10.1016/j.expneurol.2017.10.001

18. Gidday J.M. Adaptive plasticity in the retina: Protection against acute injury and neurodegenerative disease by conditioning stimuli. Cond. Med. 2018; 1 (2): 85–97. PMID: 31423482

19. Mandelbrot B. The fractal geometry of nature. Macmillan; 1983 (In Russian).

20. Field D.J. Relationships between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. 1987; 4: 2379–94.

21. Bassingthwaighte J.B., Liebovitch L.S., West B.J. Fractal Physiology. Oxford, N.Y.; 1994.

22. Field D.J., Brady N. Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes. Vis Res. 1997; 37: 3367–83. doi: 10.1016/s0042-6989(97)00181-8

23. Crownover R.M. Introduction to Fractals and Chaos. Jones and Bartlett Publishers: Boston–London, 1995.

24. Hagerhall C.M., Laike T., Küller M., et al. Human physiological benefits of viewing nature: EEG responses to exact and statistical fractal patterns. Nonlinear Dynamics Psychol Life Sci. 2015; 19 (1): 1–12.

25. Hagerhall C.M., Laike T., Taylor R.P., et al. Investigation of EEG response to viewing fractal patterns. Percept. 2008; 37: 1488–94. doi: 10.1068/p5918

26. Taylor R.P., Spehar B., Wise J.A., et al. Perceptual and physiological responses to the visual complexity of fractal patterns. Nonlinear Dynamics Psychol Life Sci. 2005; 9 (1): 89–114. doi: 10.1007/978-3-322-83487-4_4

27. Belair J., Glass L., van der Heiden U., Milton J. Dynamical disease: mathematical analysis of human illness. New York: American Institute of Physics Press, 1995.

28. Beuter A., Glass L., Mackey M., Titcombe M.S. Nonlinear dynamics in physiology and medicine. New York: Springer-Verlag, 2003.

29. Namazi H., Kulish V., Akrami A. The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal. Scientific Res. 2016; 6: 26639. https://doi.org/10.1038/srep26639

30. Sejdić E., Fu Y., Pak A., Fairley J.A., Chau T. The effects of rhythmic sensory cues on the temporal dynamics of human gait. PLoS One. 2012; 7 (8): e43104. https://doi.org/10.1371/journal.pone.0043104

31. Hunt N., McGrath D., Stergiou N. The influence of auditory-motor coupling on fractal dynamics in human gait. Sci. Rep. 2014; 4: 5879. https://doi.org/10.1038/srep05879

32. Hove M.J., Suzuki K., Uchitomi H., Orimo S., Miyake Y. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS One. 2012; 7 (3): e32600. doi: 10.1371/journal.pone.0032600

33. Zueva M.V., Karankevich A.I. Stimulator with complex-structured optical signals and method of its use. Eurasian Patent N 035247 B1 2020. Moscow: Eurasian Patent Organization (EAPO) Office (In Russian).

34. Principles on Good Laboratory Practice. OECD series on principles of Good Laboratory Practice and Compliance Monitoring. No 1 Available 27 November 2021 at https://www.oecd.org/chemicalsafety/testing/oecdseriesonprinciples ofgoodlaboratorypracticeglpandcompliancemonitoring.htm

35. Srinivasan K., Tikoo K., Jena G.B. Good Laboratory Practice (GLP) Requirements for Preclinical Animal Studies, in the Book: Nagarajan P., Gudde R., Srinivasan R., eds. Essentials of Laboratory Animal Science: Principles and Practices. Springer, Singapore; 2021.

36. ARVO Statement for the Use of Animals in Ophthalmic and Visual Research. http://www.arvo.org/about_arvo/policies/statement_for_the_use_of_animals_in_ophthalmic_and_visual_research/, Accessed 30 Oct 2016

37. WS2812B Datasheet and Specifications (2016). Intelligent control LED integrated light source. WORLDSEMI CO., LIMITED, Jan, 2016, V1.0. Available 13 January 2022 at https://voltiq.ru/datasheets/WS2812B_datasheet_EN.pdf

38. Williams J. Frequency-specific effects of flicker on recognition memory. Neuroscience. 2001; 104: 283. doi: 10.1016/s0306-4522(00)00579-0

39. Williams J., Ramaswamy D., Oulhaj A. 10 Hz flicker improves recognition memory in older people. BMC Neurosci. 2006; 7 (5): 21. doi: 10.1186/14712202-7-21

40. Natural and artificial lighting. Updated edition of SRR 23-05-95 (in Russian). Available at: http://docs.cntd.ru/document/456054197

41. Pyankova S.D. Fractal analysis in psychology: perception of self-similar objects. Psikhologicheskie issledovaniya. 2016; 9 (46): 12 (in Russian). http://psystudy.ru/index.php/eng/v9n46e/1278-pyankova46.html

42. Famiglietti E.V., Sharpe S.J. Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina. Vis. Neurosci. 1995; 12 (6), 1151–75. doi: 10.1017/s0952523800006799

43. McCulloch D.L., Marmor M.F., Brigell M.G., et al. ISCEV Standard for fullfield clinical electroretinography (2015 update). Doc. Ophthalmol. 2015; 130 (1): 1–12. https://doi.org/10.1007/s10633-014-9473-7

44. Gjörloff K., Andréasson S., Ehinger B. Standardized full-field electroretinography in rabbits. Doc. Ophthalmol. 2004; 109 (2): 163–8. doi: 10.1007/s10633-0043924-5

45. Bach M., Brigell M.G., Hawlina M., et al. ISCEV standard for clinical pattern electroretinography (PERG). Doc. Ophthalmol. 2013; 126: 1–7. https://doi.org/10.1007/s10633-012-9353-y

46. Zueva M.V., Neroev V. V., Tsapenko I.V., et al. Topographic diagnosis of retinal dysfunction in case of rhegmatogenous retinal detachment by the method of flicker ERG of a wide range of frequencies. Russian ophthalmological journal. 2009; 1 (2): 18–23 (in Russian).

47. Rockhill R.L., Daly F.J., MacNeil M.A., Brown S.P., Masland R.H. The diversity of ganglion cells in a mammalian retina. J. Neurosci. 2002; 22 (9), 3831–43. doi: 10.1523/JNEUROSCI.22-09-03831.2002

48. Muraoka Y., Ikeda H.O., Nakano N., Hangai M., Toda Y. Real-time imaging of rabbit retina with retinal degeneration by using Spectral-Domain Optical Coherence Tomography. PloS One. 2012; 7 (4):e36135. https://doi.org/10.1371/journal.pone.0036135

49. Chestnokova N.B. Clinical significance of the biochemical study of the tear fluid. MRZH. 1986; VIII (3): 7–11 (in Russian).

50. Petrovich Y.A., Terekhina N.A. Biochemistry of a tear and its change in pathology. Voprosy meditsinskoj khimii. 1990; 3: 13–9 (in Russian).

51. Veselova I.A., Sergeeva E.A., Makedonskaya M.I., et al. Journal of Analytical Chemistry. 2016; 71 (12): 1155–68 (in Russian).

52. Chesnokova N.B., Pavlenko T.A., Ugrumov M.V. Ophthalmic disorders as a manifestation of Parkinson's disease. J. Neurology and Psychiatry named after Korsakov. 2017; 117 (9): 124–31 (in Russian).

53. Marzo A., Bai J., Otani S. Neuroplasticity regulation by noradrenaline in mammalian brain. Curr. Neuropharmacol. 2009 Dec; 7 (4): 286–95. doi: 10.2174/157015909790031193

54. Peichl L. Alpha ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells. Vis. Neurosci. 1991; 7 (1–2):155–69. doi: 10.1017/s0952523800011020

55. Famiglietti E.V. Class I and class II ganglion cells of rabbit retina: A structural basis for X and Y (brisk) cells. J. Comp. Neurol. 2004; 478: 323–346. https://doi.org/10.1002/cne.20268

56. Spehar B., Clifford C., Newell B., Taylor R.P. Universal aesthetic of fractals. Copmuters & Graphics. 2003; 27 (5): 813–20. https://doi.org/10.1016/S00978493(03)00154-7

57. Taylor R.P., Spehar B., von Donkelaar P., Hagerhall C.M. Perceptual and physiological responses to Jackson Pollock’s fractals. Front. Hum. Neurosci. 2011; 5: 1–13. https://doi.org/10.3389/fnhum.2011.00060

58. Aks D., Sprott J. Quantifying aesthetic preference for chaotic patterns. Empir. Stud. Arts. 1996; 14 (1): 1–16. https://doi.org/10.2190/6V31-7M9R-T9L5CDG9

59. Hazard C., Kimport C., Johnson D. Fractal Music. Research Project. 1998–1999. Available August 2015 at http://www.tursiops.cc/fm and January 2022 at https://ru.scribd.com/document/309739163/Fractal-Music

60. Pyankova S.D., Chertkova Y.D., Scobeyeva V.A., Chertkova E.R. Influence of genetic factors on perception of self-similar objects. Psychol. Subculture Phenomenol. Contemp. Tendencies Dev. 2019; doi:10.15405/epsbs.2019.07.69.

61. Taylor R.P. Reduction of physiological stress using fractal art and architecture. Leonardo. 2006; 39 (3): 245–51. doi:10.1162/leon.2006.39.3.245

62. Salingaros N.A. Fractal art and architecture reduce physiological stress. J. Biourbanism. 2012; 2: 11–28. https://patterns.architexturez.net/system/files/jbu-ii-2012-2_nikos-a-salingaros.pdf

63. Teich M.C., Heneghan C., Lowen S.B., Ozaki T., Kaplan E. Fractal character of the neural spike train in the visual system of the cat. J. Opt. Soc. Am. A. 1997; 14 (3): 529–46. doi:10.1364/josaa.14.000529

64. Lowen S.B., Ozaki T., Kaplan E., Saleh B.E.A., Teich M.C. Fractal features of dark, maintained, and driven neural discharges in the cat visual system. Methods. 2001; 24: 377–94. doi: 10.1006/meth.2001.1207

65. Cheung N., Donaghue K.C., Liew G., et al. Quantitative assessment of early diabetic retinopathy using fractal analysis. Diabetes Care. 2009; 32 (1): 106–10. doi: 10.2337/dc08-1233

66. Ly T., Gupta N., Weinreb R.N., Kaufman P.L., Yücel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis Res. 2011; 51 (2): 243–50. https://doi.org/10.1016/j.visres.2010.08.003

67. Liu M., Duggan J., Salt T.E., Cordeiro M.F. Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp. Eye Res. 2011; 92: 244–50. doi: 10.1016/j.exer.2011.01.014

68. Strettoi E., Porciatti V., Falsini B., Pignatelli V., Rossi Ch. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J. Neurosci. 2002; 22 (13): 5492–504. doi:10.1523/jneurosci.22-13-05492.2002

69. Ivanova E., Yee C.W., Baldoni R., Sagdullaev B.T. Aberrant activity in retinal degeneration impairs central visual processing and relies on Cx36- containing gap junctions. Exp. Eye Res. 2016; 150: 81–9. doi: 10.1016/j.exer.2015.05.013

70. Zeck G. Aberrant activity in degenerated retinas revealed by electrical imaging. Front. Cell Neurosci. 2016; 10: 25. https://doi.org/10.3389/fncel.2016.00025

71. Cheng W., Law P.K., Kwan H.C., Cheng R.S. Stimulation therapies and the relevance of fractal dynamics to the treatment of diseases. Open J. Regenerative Medicine. 2014; 3 (4): 73–94. doi:10.4236/ojrm.2014.34009

72. Hebb D.O. The Organization of Behavior. New York: Wiley & Sons, 1949. https://doi.org/10.1002/1097-4679(195007)6:3<307::AIDJCLP2270060338>3.0.CO;2-K

73. Löwel S., Singer W. Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science. 1992; 255 (5041): 209–12. doi: 10.1126/science.1372754

74. Sehic A., Guo Sh., Cho K.-S., et al. Electrical stimulation as a means for improving vision. Am. J. Pathol. 2016; 186:2783e2797. doi:10.1016/j.ajpath.2016.07.017


Review

For citations:


Neroev V.V., Zueva M.V., Neroeva N.V., Fadeev D.V., Tsapenko I.V., Okhotsimskaya T.D., Kotelin V.I., Pavlenko T.A., Chesnokova N.B. Impact of fractal visual stimulation on healthy rabbit retina: functional, morphometric and biochemical studies. Russian Ophthalmological Journal. 2022;15(3):99-111. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-3-99-111

Views: 936


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)