Preview

Russian Ophthalmological Journal

Advanced search

Changes of alpha-2-macroglobulin activity in tear fluid in experimental retinal pigment epithelium atrophy of rabbits

https://doi.org/10.21516/2072-0076-2022-15-3-112-117

Abstract

Purpose. To assess the validity of alpha-2-macroglobulin ( 2-MG) activity and endothelin-1 (ET-1) concentration for the characterization of local metabolic disorders in experimental retinal pigment epithelium atrophy (RPE).

Material and methods. To reproduce RPE atrophy, 22 New Zealand Albino rabbits were given a subretinal injection of bevacizumab or saline. Tear fluid was collected before the injection and 3 months after it. In the second series of the experiment, tear fluid was also collected on the 3rd, 7th, 14th, 21st and 28th days after bevacizumab injection. Tear fluid was analyzed for the activity of 2-MG using the fermentation method and for ET-1 concentration by the immunoenzymatic method.

Results. 3 months after bevacizumab injection, 2-MG activity in the tear remained normal, while after saline injection it was, on average, twice as high as the initial one. ET-1 concentration showed a significant increase of over 1.5 times on the 3rd day after bevacizumab injection both in the tear of the operated and the contralateral eyes.

Conclusion. Subretinal bevacizumab injection had no significant lasting damaging effect on the retina, as opposed to saline injection that led to an increase of 2-MG activity in the tear. A transitory increase of ET-1 concentration in the tears after bevacizumab injection may indicate vascular tone elevation in the eye during this period. The study of 2-MG activity and ET-1 concentration in the tear may be used to monitor local metabolic shifts in experimental RPE atrophy development, as well as to assess the post-transplantation process and therapy adequacy.

About the Authors

N. V. Neroeva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Natalia V. Neroeva — Cand. of Med. Sci., ophthalmologist, department of pathology of the retina and optic nerve.

14/19, Sadovaya-Chernogriazskaya St., Moscow, 105062



N. B. Chesnokova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Natalya B. Chesnokova — Dr. of Biol. Sci., professor, chief specialist, department of pathophysiology and biochemistry.

14/19, Sadovaya-Chernogriazskaya St., Moscow, 105062



L. A. Katargina
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Lyudmila A. Katargina — Dr. of Med. Sci., professor, head of the department of children’s eye pathology, deputy director.

14/19, Sadovaya-Chernogriazskaya St., Moscow, 105062



T. A. Pavlenko
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Tatyana A. Pavlenko — Cand. of Med. Sci., head, department of patophysiology and biochemistry.

14/19, Sadovaya-Chernogriazskaya St., Moscow, 105062



O. V. Beznos
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Olga V. Beznos — Cand. of Med. Sci., senior researcher, glaucoma department.

14/19, Sadovaya-Chernogriazskaya St., Moscow, 105062



P. A. Ilyukhin
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Pavel A. Ilyukhin — Cand. of Med. Sci., ophthalmologist, researcher, department of pathology of the retina and optic nerve.

14/19, Sadovaya-Chernogriazskaya St., Moscow, 105062



O. A. Utkina
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Olga A. Utkina — PhD student, department of pathology of the retina and optic nerve.

14/19, Sadovaya-Chernogriazskaya St., Moscow, 105062



References

1. Wong W.L., Su X., Li X., et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health. 2014; 2 (2): e106–e116. doi: 10.1016/S2214-109X(13)70145-16

2. Neroeva N.V., Neroev V.V., Ilyukhin P.A., et al. Modeling the atrophy of retinal pigment epithelium. Russian ophthalmological journal. 2020; 13 (4): 58–63 (in Russian). doi:10.21516/2072-0076-202013-4-58-63

3. M'Barek B.K., Habeler W., Monville C. Stem cell-based RPE therapy for retinal diseases: engineering 3D tissues amenable for regenerative medicine. Adv. Exp. Med. Biol. 2018; 1074: 625–662. doi:10.1007/978-3-319-75402-4

4. Zarbin M., Sugino I.E. Concise Review: Update on retinal pigment epithelium transplantation for age-related macular degeneration. Stem Cells Transl. Med. 2019; 8 (5): 466–77. doi: 10.1002/sctm.18-0282

5. Kharitonov A.E., Surdina A.V., Lebedeva O.S., Bogomazova A.N., Lagarkova M.A. Possibilities for using pluripotent stem cells for restoring damaged eye retinal pigment epithelium. Acta Naturae. 2018; 10 (3): 30–9 (in Russian).

6. Seah I., Liu Z., Soo Lin Wong D., et al. Retinal pigment epithelium transplantation in a non-human primate model for degenerative retinal diseases. J. Vis. Exp. 2021; 172. doi: 10.3791/62638

7. Neroev V.V., Neroeva N.V., Zueva M.V., et al. Electroretinographic signs of retinal remodeling after experimental induction of retinal pigment epithelium atrophy. Vestnik oftal’mologii. 2021;137 (4): 24–30 (in Russian)]. doi: 10.17116/oftalma202113704124

8. Beznos O.V., Chesnokova N.B. Methodic approaches and interpretation of biochemical analyses of tear fluid in ophthalmology. Russian ophthalmological journal. 2012; 5 (2): 101–6 (in Russian).

9. Rehman A.A., Ahsan H., Khan F.H. -2-Macroglobulin: a physiological guardian. J. Cell. Physiol. 2013; 228 (8): 1665–1675. doi: 10.1002/jcp.24266

10. Cater J.H., Wilson M.R., Wyatt A.R. Alpha-2-Macroglobulin, a hypochloriteregulated chaperone and immune system. Modulator Oxid. Med. Cell Longev. 2019; 2019: 5410657. doi: 10.1155/2019/5410657

11. Barcelona P.F., Luna J.D., Chiabrando G.A., et al. Immunohistochemical localization of low density lipoprotein receptor-related protein 1 and alpha(2)Macroglobulin in retinal and choroidal tissue of proliferative retinopathies. Exp. Eye Res. 2010; 91 (2): 264–72. doi: 10.1016/j.exer.2010.05.017

12. Varma V.R., Varma S., An Y., et al. Alpha-2 macroglobulin in Alzheimer's Disease: a marker of neuronal injury through the RCAN1 pathway. Mol. Psychiatry. 2017; 22 (1): 13–23. doi: 10.1038/mp.2016.206

13. Gupta A.K., Pokhriyal R., Khan M.I., et al. Cerebrospinal fluid proteomics for identification of 2-macroglobulin as a potential biomarker to monitor pharmacological therapeutic efficacy in dopamine dictated disease states of Parkinson's disease and schizophrenia. Neuropsychiatr. Dis. Treat. 2019; 15:2853-67. doi: 10.2147/NDT.S214217

14. Bogdanov V., Kim A., Nodel M., et al. A pilot study of changes in the level of catecholamines and the activity of alpha-2-macroglobulin in the tear fluid of patients with Parkinson's disease and parkinsonian mice. Int. J. Mol. Sci. 2021; 22 (9): 4736. doi: 10.3390/ijms22094736

15. Chesnokova N.B., Pavlenko T.A., Beznos O.V., Grigoriev A.V. The role of the endothelin system in the pathogenesis of eye diseases. Vestnik ophthalmologii. 2020; 136 (1): 117–23 (in Russian). doi: 10.17116/oftalma2020136011117

16. Torbidoni V., Iribarne M., Ogawa L., et al. Endothelin-1 and endothelin receptors in light-induced retinal degeneration. Exp. Eye Res. 2005; 81 (3): 265–75. doi:10.1016/j.exer.2004.12.024

17. Flammer J., Konieczka K. Retinal venous pressure: the role of endothelin. EPMA J. 2015; 6: 21. doi:10.1186/s13167-015-0043-1

18. Kobayashi T., Oku H., Fukuhara M., et al. Endothelin-1 enhances glutamateinduced retinal cell death, possibly through ETA receptors. Invest. Ophthalmol. Vis. Sci. 2005; 46 (12): 4684–90. doi:10.1167/iovs.05-0785

19. Pavlenko T.A., Chesnokova N.B., Davydova N.G., et al. Level of tear endothelin-1 and plasminogen in patients with glaucoma and proliferative diabetic retinopathy. Vestnik oftal’mologii. 2013; 129 (4): 20–3 (in Russian).

20. Cabral T., Lima L.H., Mello L.G.M., et al. Bevacizumab injection in patients with neovascular age-related macular degeneration increases angiogenic biomarkers. Ophthalmol. Retina. 2018; 2 (1): 31–7. doi:10.1016/j.oret.2017.04.004

21. Parikh R.V., Khush K., Pargaonkar V.S., et al. Association of endothelin-1 with accelerated cardiac allograft vasculopathy and late mortality following heart transplantation. J. Card. Fail. 2019; 25 (2): 97–104. doi:10.1016/j.cardfail.2018.12.001

22. Neroeva N.V., Neroev V.V., Katargina L.A., et al. The way of modeling of the retinal pigment epithelium atrophy. RU Patent № 2709247; 2019 (in Russian).

23. Chuang W.H., Liu P.C., Hung C.Y., Lee K.K. Purification, characterization and molecular cloning of alpha-2-macroglobulin in cobia, Rachycentron canadum. Fish Shellfish Immunol. 2014; 41 (2): 346–55. doi: 10.1016/j.fsi.2014.09.016

24. Janciauskiene S., Royer P.J., Fuge J., et al. Plasma acute phase proteins as predictors of chronic lung allograft dysfunction in lung transplant recipients. J. Inflamm. Res. 2020; 13:1021-8. doi: 10.2147/JIR.S272662


Review

For citations:


Neroeva N.V., Chesnokova N.B., Katargina L.A., Pavlenko T.A., Beznos O.V., Ilyukhin P.A., Utkina O.A. Changes of alpha-2-macroglobulin activity in tear fluid in experimental retinal pigment epithelium atrophy of rabbits. Russian Ophthalmological Journal. 2022;15(3):112-117. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-3-112-117

Views: 614


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)