Preview

Российский офтальмологический журнал

Расширенный поиск

Микроциркуляторные и функциональные изменения в сетчатке и каналах зрительной системы при рассеянном склерозе

https://doi.org/10.21516/2072-0076-2017-10-3-29-41

Полный текст:

Аннотация

Цель: сопоставить тонкие изменения морфологии и микроциркуляции сетчатки и ДЗН и функциональной активности каналов зрительной системы у пациентов с рассеянным склерозом (РС) и оптическим невритом (ОН) в анамнезе. Материалы и методы: Обследовано 19 больных РС ремитирующего течения (длительность около 4х лет) с давностью ОН около 6 мес. Выполнены стандартные неврологические и офтальмологические обследования, оптическая когерентная томография (ОКТ) с протоколом ангио-ОКТ (RTVue XR 100 Avanti). Регистрировали паттерн ЭРГ (ПЭРГ) и зрительные вызванные потенциалы (ЗВП) на реверсирующие черно-белые, яркостные (черно-желтые) и хроматические (красно-зеленые и сине-желтые) паттерны (RETIport/scan, Roland Consult, Германия). Результаты: На уровне поверхностного капиллярного сплетения в парафовеальной зоне снижена плотность и площадь сосудов, существенно снижен индекс кровотока (82,6% от контроля). Не обнаружено достоверных изменений кровотока в перипапиллярной зоне. Статистически значимо укорочена латентность компонента Р50 в ПЭРГ ответах на все стимулы. Латентность N95 удлинена в среднем на 10% от значений в группе контроля. Амплитуда пика N95 ПЭРГ умеренно снижена. Удлинение времени кульминации пика Р100 ПЗВП в ответах на яркостные и хроматические стимулы статистически значимо в ответах на сине-желтые паттерны с размерами 16° и 0,3°. Уменьшение толщины комплекса ганглиозных клеток (КГК) высоко коррелирует со снижением микроциркуляции в поверхностном капиллярном сплетении. Заключение: Документированы ранние изменения ретинальной функции у больных РС небольшой длительности с ОН в анамнезе с почти равным вовлечением в патологический процесс ганглиозных клеток и путей парво-, магно- и кониоцеллюлярной систем. Впервые установлены прямые корреляции между показателями микроциркуляции и морфометрии внутренней сетчатки. Показана клиническая значимость одновременного выявления у больных РС задержки латентности пика Р100 ПЗВП и снижения толщины КГК и слоя нервных волокон сетчатки. Для цитирования: Лантух Е.П., Зуева М.В., Цапенко И.В. и др. Микроциркуляторные и функциональные изменения в сетчатке и каналах зрительной системы при рассеянном склерозе. Российский офтальмологический журнал. 2017; 10 (3): 29-41. doi: 10.21516/2072-0076-2017-10-3-29-41.

Об авторах

Е. П. Лантух
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России
Россия


М. В. Зуева
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России
Россия


И. В. Цапенко
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России
Россия


О. В. Зайцева
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России
Россия


М. Н. Захарова
ФГБУН «Научный центр неврологии», Москва
Россия


Н. М. Маглакелидзе
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России
Россия


Т. О. Симанив
ФГБУН «Научный центр неврологии», Москва
Россия


Список литературы

1. Bjartmar C., Kinkel R.P., Kidd G., Rudick R.A., Trapp B.D. Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology. 2001;57(7):1248-52. doi: 10.1167/iovs.09-3467.

2. Гусев Е.И., Завалишин И. А., Бойко А.Н., Миклош М. Рассеяный склероз и другие демиелинизирующие заболевания. 2004; 540с.

3. Melcon M.O., Correale J., Melcon C.M. Is it time for a new global classification of multiple sclerosis? J Neurol Sci. 2014 Sep 15;344(1-2):171-81. doi: 10.1016/j.jns.2014.06.051.

4. Hely M.А., Mcmanis P.G., Doran T.J., Walsh J.C., Mcleod J.G. Acute optic neuritis: a prospective study of risk factors for multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry. 1986; 49: 1125-1130.

5. Нероев В.В., Елисеева Е.К., Зуева М.В., Лысенко В.С., Захарова М.Н., Цапенко И.В., Семенова Н.А, Симанив Т.О. Демиелинизирующий оптический неврит: корреляция данных оптической когерентной томографии и мультифокальной электроретинографии. Анналы клинической и экспериментальной неврологии. 2014; 8(2): 22-26.

6. Акопян В.С., Бойко А.Н., Давыдовская М.В., Семенова Н.С., Филоненко И.В., Фомин А.В., Цысарь М.А. Нейроархитектоника сетчатки при рассеянном склерозе: диагностические возможности оптической когерентной томографии (предварительные результаты). Офтальмология. 2011; 8(1):32-36.

7. Нероев В.В., Зуева М.В., Лысенко В.С., Елисеева Е.К., Захарова М.Н. Оптический неврит / Аутоиммунные заболевания в неврологии. Клиническое руководство, Москва 2014, Т.1 С. 66-102.

8. Нероев В.В., Зуева М.В., Цапенко И.В., Брылев Л.В., Захарова М.Н., Лысенко В.С., Зайцева О.В., Лин Е.Д., Амплеева М.А., Елисеева Е.К., Гринченко М.И., Завалишин И.А., Резвых С.В. Нейродегенеративные изменения в сетчатке у больных ремитирующим рассеянным склерозом и ретробульбарным невритом: морфофункциональные параллели. Российский Офтальмологический Журнал. 2012;5(4):63-68.

9. Bennett J.L., de Seze J., Lana-Peixoto M. et al. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography. Mult. Scler. 2015; 21(6):678-688. DOI: 10.1177/1352458514567216

10. Gelfand J.M., Cree B.A., Nolan R., Arnow S., Green A.J. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol. 2013;70:629-633. doi: 10.1001/jamaneurol.2013.1832.

11. Ratchford J.N., Saidha S., Elias S. et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology. 2013; 80(1): 47-54. doi: 10.1212/WNL.0b013e31827b1a1c

12. Saidha S., Sotirchos E.S., Ibrahim M.A. et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 2012;11:963-972. doi: 10.1177/1352458511418630.

13. Saidha S., Syc S.B., Durbin M.K. et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult. Scler. 2011;17(12):1449-1463. doi: 10.1177/1352458511418630

14. Elliot M.F., Fujimoto J.G., Frohman T.C., Calabresi P.A., Cutter G., Balcer L. J Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat. Clin. Pract. Neurol. 2008;4(12): 664-675. doi: 10.1038/ncpneuro0950

15. Гусев Е.И., Завалишин И.А., Бойко А.Н. Рассеянный склероз. Клиническое руководство. Москва: Реал Тайм, 2011.

16. Gills J.P. Electroretinographic abnormalities and advanced multiple sclerosis. Invest Ophthalmol Vis Sci. 1966; 5 (6): 555-559.

17. Pierelli F., Pozzessere G., Stefano E., Martelli M., Rizzo P.A., Morocutti C. Pattern visual evoked potentials and flash electroretinogram in clinically definite multiple sclerosis. Eur Neurol. 1985; 24(5): 324-329.

18. Coupland S.G., Kirkham T.H. Flash electroretinogram abnormalities in patients with clinically definite multiple sclerosis. Can J Neurol Sci. 1982; 9(3):325-330.

19. Gundogan F.C., Demirkaya S., Sobaci G. Is optical coherence tomography really a new biomarker candidate in multiple sclerosis? - A Structural and Functional Evaluation. Invest. Ophthalmol. Vis. Sci. 2007; 48:5773-5781. doi:10.1167/iovs.07-0834

20. Saidha S., Ibrahim M.A., Eckstein C. et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain. 2011; 134 (2): 518-533. doi: 10.1093/brain/awq346

21. Xiaogang W., Yali J., Spain R. et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Brit. J. Ophthalmol. 2014; 98: 1368-1373. doi:10.1136/bjophthalmol-2013-304547

22. Porciatti V., Di Bartolo E., Nardi N., Fiorentini A. Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study. Vision Res. 1997; 37(14): 1975-1987. doi.org/10.1016/S0042-6989(97)00018-7

23. Seigo M.A., Sotirchos E.S., Newsome S. et al. In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. Neurol 2012;259:2119-2130.

24. Pulicken M., Gordon-Lipkin E., Balcer.J., Frohman E., Cutter G., Calabresi P.A. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology. 2007;69(22):2085-92. DOI: 10.1212/01.wnl.0000294876.49861.dc

25. Fisher E., Chang A., Fox R.J. et al. Imaging correlates of axonal swelling in chronic multiple sclerosis brains. Ann Neurol. 2007;62(3):219-28. DOI: 10.1002/ana.21113

26. Henderson A.P., Trip S.A., Schlottmann P.G. et al. An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain. 2008;131(1):277-87. DOI: 10.1093/brain/awm285

27. Toledo J., Sepulcre J., Salinas-Alaman A. et al. Retinal nerve fiber layer atrophy is associated with physical and cognitive disability in multiple sclerosis. Mult Scler. 2008;(7):906-12. doi: 10.1177/1352458508090221.

28. Gordon-Lipkin E., Chodkowski B., Reich D.S. et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology. 2007;69:1603-1609. DOI: 10.1212/01.wnl.0000295995.46586.ae

29. Birch M.K., Barbosa S., Blumhardt L.D., O'Brien C., Harding S.P. Retinal venous sheathing and the blood-retinal barrier in multiple sclerosis. Arch Ophthalmol. 1996;114(1):34-9.

30. Reis A., Mateus C., Macário M.C., de Abreu J.R., Castelo-Branco M. Independent patterns of damage to retinocortical pathways in multiple sclerosis without a previous episode of optic neuritis. J. Neurol. 2011; 258(9):1695-704. doi: 10.1007/s00415-011-6008-y.

31. Asselman P., Chadwick D.W., Marsden D.C. Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis. Brain. 1975; 98(2):261-282. DOI: http://dx.doi.org/10.1093/brain/98.2.261

32. Муравьева С.В., Дешкович А.А., Шелепин Ю.Е. Магно- и парвосистемы человека и избирательные нарушения их работы. Российский физиологический журнал им. И.М. Сеченова. 2008;94(6): 637-649.

33. Murav’eva S.V., Deshkovich A.A., Shelepin Y.E. The human magno and parvo systems and selective impairments of their functions. Neurosci. Behav. Physiol. 2009;39(6):535-543. doi: 10.1007/s11055-009-9161-3.

34. Mullen K.T., Plant G.T. Colour and luminance vision in human optic neuritis. Brain. 1986;109:1-13. doi: 10.1167/iovs.09-3467.

35. Holder G.E. Multiple sclerosis / In: Heckenlively J.R., Arden G.B. (eds). Principles and Practice of Clinical Electrophysiology of Vision. Mosby Year Book: St Louis, MO, 1991, P. 797-805.

36. Holder G.E. The incidence of abnormal pattern electroretinography in optic nerve demyelination. Electroencephalogr. Clin. Neurophysiol. 1991; 78: 18-26.

37. Porciatti V., Sartucci F. Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain. 1996;119 (3):723-740.

38. Falsini B., Porrello G., Porciatti V., Fadda A., Salgarello T., Piccardi M. The spatial tuning of steady state pattern electroretinogram in multiple sclerosis. Eur. J. Neurol. 1999; 6(2):151-162.

39. Sartucci F., Borghetti D., Bocci T. et al. Dysfunction of the magnocellular stream in Alzheimer's disease evaluated by pattern electroretinograms and visual evoked potentials. Brain Res. Bull. 2010;82(3-4):169-176. doi:10.1016/j.brainresbull.2010.04.001

40. Bessler P., Klee S., Kellner U., Haueisen J. Silent substitution stimulation of S-cone pathway and Land M-cone pathway in glaucoma. Invest. Ophthalmol. Vis. Sci. 2010;(51):319-326. doi:10.1167/iovs.09-3467

41. Silva M.F., Faria P., Regateiro F.S. et al. Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson's disease. Brain. 2005; 128: 2260-2271. DOI: http://dx.doi.org/10.1093/brain/awh581

42. Sannita W.G., Carozzo S., Orsini P. et al. 'Gamma' band oscillatory response to chromatic stimuli in volunteers and patients with idiopathic Parkinson's disease. Vision Res. 2009;49(7):726-34. doi: 10.1016/j.visres.2009.01.018.

43. Sartucci F., Murri L., Orsini C., Porciatti V. Equiluminant red-green and blue-yellow VEPs in multiple sclerosis. J. Clin. Neurophysiol. 2001;18(6):583-591.

44. Sartucci F., Porciatti V. Visual-evoked potentials to onset of chromatic red-green and blue-yellow gratings in parkinson’s disease never treated with l-dopa. J. Clin. Neurophysiol. 2006; 2395: 431-435.doi: 10.1097/01.wnp.0000216127.53517.4d

45. Blanks J.C., Torigoe Y., Hinton D.R., Blanks R.H. Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol. Aging. 1996; 17:377-384.

46. Schechter I., Butler P.D., Zemon V.M. et al. Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular selective stimuli in schizophrenia. Clin. Neurophysiol. 2005; 116: 2204-2215. doi: 10.1016/j.clinph.2005.06.013

47. Skottun B.C., Skoyles J.R. On Identifying Magnocellular and Parvocellular Responses on the Basis of Contrast-Response Functions. Schizophr. Bull. 2011; 37(1): 23-26. doi: 10.1093/schbul/sbq114

48. Petzold A., de Boer J.F., Schippling S. et al. Optical coherence tomography in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol. 2010; 9: 921-932 doi: 10.1016/S1474-4422(10)70168-X.

49. Gundogan F.C., Tas A., Altun S., Oz O., Erdem U., Sobaci G. Color vision versus pattern visual evoked potentials in the assessment of subclinical optic pathway involvement in multiple sclerosis. Indian J Ophthalmol. 2013;61(3): 100-103. doi: 10.4103/0301-4738.99842

50. Klistorner A., Arvind H., Garrick R., Graham S.L., Paine M., Yiannikas C. Interrelationship of optical coherence tomography and multifocal visual-evoked potentials after optic neuritis. Invest. Ophthalmol. Vis. Sci. 2010; 51: 2770-2777. DOI: 10.1167/iovs.09-4577

51. Costello F., Coupland S., Hodge W. et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann. Neurol. 2006;59: 963-969. DOI: 10.1002/ana.20851

52. Frohman E.M., Fujimoto J.G., Frohman T.C., Calabresi P.A., Cutter G., Balcer L.J. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol. 2008; 4(12):664-675. doi: 10.1038/ncpneuro0950.


Для цитирования:


Лантух Е.П., Зуева М.В., Цапенко И.В., Зайцева О.В., Захарова М.Н., Маглакелидзе Н.М., Симанив Т.О. Микроциркуляторные и функциональные изменения в сетчатке и каналах зрительной системы при рассеянном склерозе. Российский офтальмологический журнал. 2017;10(3):29-41. https://doi.org/10.21516/2072-0076-2017-10-3-29-41

For citation:


Lantukh E.P., Zueva M.V., Tsapenko I.V., Zaitseva O.V., Zakharova M.N., Maglakelidze N.M., Simaniv T.O. Microcirculatory and functional changes in the retina and visual channels in multiple sclerosis. Russian Ophthalmological Journal. 2017;10(3):29-41. (In Russ.) https://doi.org/10.21516/2072-0076-2017-10-3-29-41

Просмотров: 44


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)