Optical coherence tomography and microperimetry in the early diagnosis of glaucoma
https://doi.org/10.21516/2072-0076-2022-15-3-163-167
Abstract
The review presents modern possibilities of early diagnosis of glaucoma using optical coherence tomography (OCT), angio-OCT and microperimetry. We analyzed literature data for the last decade, focused on testing patients with suspected glaucoma or diagnosed with glaucoma, including its various stages. The data confirm the advantages of OCT, angio-OCT anf microperimetry, such as fast testing procedures, non-invasiveness, high informativeness, sensitivity and specificity of the methods, as well as real possibilities of early detection of glaucoma, which are especially promising if a combination of methods is used.
About the Authors
U. S. PlyaskinaRussian Federation
Ulyana S. Plyaskina — PhD student, chair of eye diseases.
6, Miklukho-Maklaya St., Moscow, 117198
V. V. Biryukov
Russian Federation
Vladimir V. Biryukov — PhD student, chair of eye diseases.
6, Miklukho-Maklaya St., Moscow, 117198
M. A. Frolov
Russian Federation
Mikhail A. Frolov — Dr. of Med. Sci., professor, head of chair of eye diseases.
6, Miklukho-Maklaya St., Moscow, 117198
References
1. Movsisyan A.B., Kuroevdov A.V., Arkharov M.A., Prokhorenko V.V., Chepurnov I.A. Epidemiological analysis of the incidence and prevalence of primary open-angle glaucoma in the Russian Federation. RMJ. Clinical ophthalmology. 2022; 22 (1): 3–10 (in Russian). doi: 10.32364/2311-7729-2022-22-1-3-10
2. Aleksandrov A.A., Aznabaev B.M., Mukhamadeev T.R., Zagidullina A.Sh., Dibaev T.I. The first experience of using OCT-angiography in the diagnosis of glaucoma. Modern technologies in ophthalmology. 2015; 3: 9–10 (in Russian).
3. Kurysheva N.I., Maslova E.V., Trubilina A.V., Ardzhevnishvili T.D., Fomin A.V. Features of macular blood flow in glaucoma. Vestnik oftal’mologii. 2017; 133 (2): 29–38 (in Russian). doi: 10.17116/oftalma2017133229-37
4. Kurysheva N.I. Optical coherence tomography in the diagnosis of glaucoma optic neuropathy. Part 2. National Journal of Glaucoma. 2016; 15 (3): 60–70 (in Russian).
5. Kurysheva N.I., Parshunina O.A. Optical coherence tomography in the diagnosis of glaucoma optic neuropathy. Part 1. National Journal of Glaucoma. 2016; 15 (1): 86–9 (in Russian)
6. Kurysheva N.I., Maslova E.V., Trubilina A.V., Lepeshkina L.V. Color Doppler mapping and OCT-angiography in the diagnosis of glaucoma. Modern technologies in ophthalmology. 2016; 3 (11): 256–9 (in Russian). doi:10.18008/1816-5095-2016-2-102-110
7. Sato S., Hirooka K., Baba T., et al. Correlation between the ganglion cell-inner plexiform layer thickness measured with cirrus HD-OCT and macular visual field sensitivity measured with microperimetry. Invest. Ophthalmol. Vis. Sci. 2013; 54 (4): 3046–51. doi: 10.1167/iovs.12-11173
8. Wang Y. Fawzi A. A., Varma R., et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest. Ophthalmol. Vis Sci. 2015; 52 (2): 840–5. doi:10.1167/iovs.10-5985
9. Kurysheva N.I., Trubilina A.V., Maslova E.V., Ardzhevnishvili T.D., Lepeshkina L.V. OCT-angiography of the macular region in glaucoma. Point of view. East-West. 2016; 1: 86–8 (in Russian).
10. Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V. OCT angiography and color Doppler mapping in the study of hemoperfusion of the retina and optic nerve in glaucoma. Ophthalmology. 2016; 13 (2): 102–10 (in Russian). doi: 10.18008/1816-5095-2016-2-102-110
11. WuDunn D., Takusagawa H.L., Sit A.J., et al. OCT Angiography for the diagnosis of glaucoma: A report by the American Academy of Ophthalmology. Ophthalmology. 2021; 128 (8): 1222–35. doi: 10.1016/j.ophtha.2020.12.027
12. Ratanawongphaibu K., Tsikata E., Zemplenyi M., et al. Earlier detection of glaucoma progression using High-Density 3-Dimensional Spectral-Domain OCT optic nerve volume scans. Ophtalmology Glaucoma. 2021; 4 (6): 604–16. doi: 10.1016/j.ogla.2021.03.010
13. Arutyunyan L.L., Anisimova S.Yu., Morozova Yu.S., Anisimov S.I. Biometric and morphometric parameters of the lamina cribrosa in patients with different stages of primary open-angle glaucoma. National Journal of Glaucoma. 2021; 20 (3): 11–9 (in Russian). doi: 10.25700/2078-4104-2021-20-3-11-19
14. Gaponko O.V., Kuroyedov A.V., Gorodnichiy V.V., et al. New morphometric markers for diagnosing glaucoma. RMJ. Clinical ophthalmology. 2016; 1: 1–6 (in Russian).
15. Kiseleva T.N., Adzhemyan N.A. Methods for assessing ocular blood flow in vascular diseases. Regional circulation and microcirculation. 2015; 14 (4 (56)): 4–10 (in Russian). doi: 10.24884/16826655-2015-14-4-4-10
16. Sehi M., Goharian I., Ranjith Konduru R., et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014; 121 (3): 750–8. doi: 10.1016/j.ophtha.2013.10.022
17. Alexandrov A.A., Aznabaev B.M., Mukhamedeev T.R., Zagidullina A.Sh., Dibaev T.I. OCT angiography: quantitative and qualitative assessment of the microvascular bed of the posterior segment of the eye. Cataract and Refractive Surgery. 2015; 15 (3): 4–9 (in Russian).
18. Shpak A.A., Kachalina G.F., Pedanova E.K. Comparative analysis of the results of microperimetry and traditional computerized perimetry in the norm. Vestnil Oftal’mologii. 2009; 125 (3): 31–3 (in Russian).
19. Aznabaev B.M., Zagidullina A.Sh., Aleksandrov A.A. Peculiarities of microcirculation and morphometry of the optic disc in patients with normal pressure glaucoma. RMJ. Clinical ophthalmology. 2017; 18 (1): 17–20 (in Russian). doi:10.21689/2311-7729-2017-17-1-17-20
20. Kovelenova I.V., Budarina S.I., Salikhova I.R., Salikhov L.A., Biblaev P.V. OCT-angiography experience in the study of macular blood flow at the level of the superficial vascular plexus in patients with the initial stage of glaucoma. Modern technologies in ophthalmology. 2020. 4 (35): 151 (in Russian). doi: https://doi.org/10.25276/2312-4911-2020-4-131-132
21. Hervás A., García-Delpech S., Udaondo P. Analysis of the perfusion of the optic nerve using angio-OCT in glaucoma. Arch. Soc. Esp. Oftalmol. 2021. 96 (4): 214–8. doi:10.1016/j.oftale.2020.05.029
22. Maddess T. Modeling the relative influence of fixation and sampling errors on retest variability in perimetry. Graefes Arch. Clin. Exp. Ophthalmol. 2014; 252 (10): 1611–9. doi: 10.1007/s00417-014-2751-y
23. Doga A.V., Kachalina G.F., Kasmynina T.A., Klepinina O.B. Diagnostic value of noninvasive methods of examination of the fundus in the choice of tactics for the treatment of patients with central serous choreoretinopathy. Modern technologies in ophthalmology. 2014; 1: 37–9 (in Russian).
24. Koshelev D.I., Sirotkina I.V., Lebedev I.V. The position of the fixation area and significant characteristics of eye movements in violation of central vision. Vestnik OGU. 2009; 12: 74–7 (in Russian).
25. Sawa M., Gomi F., Toyoda A., et al. A microperimeter that provides fixation pattern and retinal sensitivity measurement. Jpn. J. Ophtalmol. 2006; 50 (2): 111–5. doi: 10.1007/s10384-005-0292-y
26. Lisochkina A.B., Nechiporenko P.A. Microperimetry — the advantages of the method and its practical capabilities. Ophthalmology journal. 2009; 2 (1): 18–22 (in Russian).
27. Mori S., Hangai M., Sakamoto A., Yoshimura N. Spectral domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J. Glaucoma. 2010; 19 (8): 528–53. doi:10.1097/IJG.0b013e3181ca7acf
28. Wu Z., Guymer R.H., Finger R.P. Fundus-driven perimetry (microperimetry) compared to conventional static automated perimetry: similarities, differences and clinical applications. Can. J. Ophthalmol. 2013; 48 (5): 358–63. doi: 10.1016/j.jcjo.2013.03.021
29. Wu Z., Cimetta R., Caruso E., Guymer R.H. Performance of a defect-mapping microperimetry approach for characterizing progressive changes in deep Scotomas. Transl. Ves. Sci. Technol. 2019; 8 (4): 16. doi:10.1038/s41598-01947565-y
30. Aznabaev B.M., Zagidullina A.Sh., Aleksandrov A.A. icroperimetry and morphometric parameters of the optic nerve head and macular area in patients with primary openangle glaucoma. Ophthalmology. 2017; 14 (4): 341–6 (in Russian). doi:10.18008/1816-5095-2017-4-341-346
31. Gorbunova N.Yu., Pavlova A.Yu., Shlenskaya O.V. Possibilities of microperimetry in the diagnosis of glaucoma. Practical medicine. 2012; 4–1 (59): 186–9 (in Russian).
32. Kazennova I.A., Chuprov A.D., Voronina A.E., Kazennov A.N. Microperimetry in the diagnosis of glaucoma in the early stages. Modern technologies in ophthalmology. 2021; 37 (2): 170–6 (in Russian)]. doi:10.25276/2312-4911-2021-2-170-176
33. Hirooka K., Misaki K., Nitta E., et al. Comparison of Macular Integrity Assessment (MAIA ™), MP-3, and the Humphrey Field Analyzer in the evaluation of the relationship between the structure and function of the macula. PLoS ONE. 2016; 11 (3): e0151000. doi:10.1371/journal.pone.0151000
34. Seol B.R., Jeoung J.W., Park K.H. Glaucoma detection ability of macular ganglion cell-inner plexiform layer thickness in myopic preperimetric. Invest. Ophthalmol. Vis. Sci. 2015; 56 (13): 8306–13. doi: 10.1167/iovs.15-18141Investigative18141
35. Oli A.D., Joshi D. Can ganglion cell complex assessment on cirrus HD OCT aid in detection of early glaucoma? Saudi J. Ophthalmol. 2015; 29 (3): 201–4. doi: 10.1016/j.sjopt.2015.02.007
36. Ioileva E.E., Krivosheeva M.S. Microperimetry in optic neuritis due to multiple sclerosis. Ophthalmosurgery. 2016; 3: 33–8 (in Russian). doi: 10.25276/02354160-2016-3-33-38
37. Moghimi S., Hosseini H., Riddle J., et al. Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Invest. Ophthalmol. Vis. Sci. 2012; 53 (8): 4519–30. doi: 10.1167/iovs.11-8362
38. Resch H., Deak G., Pereira I., Vass C. Comparison of optic disc parameters using spectral domain Cirrus high-definition optical coherence tomography and confocal scanning laser ophthalmoscopy in normal eyes. Acta Ophthalmol. 2012; 90 (3): e 225–9. doi: 10.1111/j.1755-3768.2012.02385.x
39. Sato S., Hirooka K., Baba T., Shiraga F. Comparison of optic nerve head parameters using Heidelberg Retina Tomograph 3 and spectral-domain optical coherence tomography. Clin. Experiment. Ophthalmol. 2012; 40 (7): 721–6. doi:10.1111/j.1442-9071.2012.02782.x
40. Abe R.Y., Gracitelli C.P.B., Medeiros F.A. The use of spectral-domain optical coherence tomography to detect glaucoma progression. Open Ophthalmol. J. 2015; 9: 78–88. doi:10.2174/1874364101509010078
41. Sung K.R., Na J.H., Lee Y. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by cirrus HD optical coherence tomography. J. Glaucoma. 2012; 21 (7): 498–504. doi:10.1097/ijg.0b013e318220dbb7
42. Kreft D., Doblhammer G., Guthoff R.F., Frech S. Prevalence, incidence, and risk factors of primary open-angle glaucoma — a cohort study based on longitudinal data from a German public health insurance. BMC Public Health. 2019; 19 (1): 851. doi: 10.1186/s12889-019-6935-6
43. Lima V.C., Prata T.S., De Moraes C.G., et al. A comparison between microperimetry and standard achromatic perimetry of the central visual field in eyes with glaucomatous paracentral visual-field defects. Br. J. Ophthalmol. 2010; 94 (1): 64–7. doi: 10.1136/bjo.2009.159772
44. Tepelus T.C., Song S., Nittala M.G., et al. Comparison and correlation of retinal sensitivity between microperimetry and standard automated perimetry in low-tension glaucoma. J. Glaucoma. 2020; 29 (10): 975–80. doi: 10.1097/IJG.0000000000001599
45. Arintawati P., Sone T., Akita T., Tanaka J., Kiuchi Y. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J. Glaucoma. 2013; 22 (9): 713–8. doi: 10.1097/IJG.0b013e318259b2e1
46. Lo J., Poon L.Y., Chen Y.H., et al. Patchy scotoma observed in chorioretinal patchy atrophy of myopic macular degeneration. Invest. Ophthalmol. Vis. Sci. 2020; 61 (2): 15. doi: 10.1167/iovs.61.2.15
47. Ruminski D., Palczewska G., Nowakowski M., et al. Two-photon microperimetry: sensitivity of human photoreceptors to infrared light. Biomed. Opt. Express. 2019; 10 (9): 4551–67. doi: 10.1364/BOE.10.004551
48. Begum V.U., Addepalli U. K., Yadav Ravi K., et al. Ganglion cell-inner plexiform layer thickness of high definition optical coherence tomography in perimetric and preperimetric glaucoma. Invest. Ophthalmol. Vis. Sci. 2014; 55 (8): 4768–75. doi: 10.1167/iovs.14-14598
Review
For citations:
Plyaskina U.S., Biryukov V.V., Frolov M.A. Optical coherence tomography and microperimetry in the early diagnosis of glaucoma. Russian Ophthalmological Journal. 2022;15(3):163-167. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-3-163-167