Preview

Russian Ophthalmological Journal

Advanced search

Changes of corneal epithelial thickness before and after OK-correction according to SD-OCT

https://doi.org/10.21516/2072-0076-2017-10-3-49-54

Abstract

Purpose: to evaluate the thickness of corneal epithelium after orthokeratological (OK) correction with the help of SDOCT. Material and methods: 18 patients (36 eyes) averagely aged 12.11 ± 1.68 with myopia of -3.21 ± 0.94 D and axial length of 24.47 ± 0.7 mm were examined. All patients were checked for corneal epithelial thickness (ET) with the help of SD-OCT Avanti RTVueXR (Optovue Inc., Fremont, CA, USA), which created maps of 6 mm in diameter before OK correction with lenses ESA-DL (Dr. Lens Technology, Russia) and 36.44 ± 5.81 days after it. A corneal ET map was divided into 17 sectors with average values indicated, and 3 zones (the central zone of 2 mm, the paracentral zone from 2 to 5 mm, and the mid-peripheral zone from 5 to 6 mm). We calculated the maximum (Max) and the minimum (Min) values of ET, the difference between them (Max Min) in the 5 mm zone, and standard deviation of values in the 5 mm zone (Std Dev). Results. The corneal ET showed no difference among the sectors of the 6-mm map (p > 0.05) before OK lenses were worn. The ET in the central zone was 53.1 ± 1.68 μm. The ET in the central zone decreased by 16.6 % from the initial value after 36.44 ± 5.81 days of OK correction, with a single sector (S) showing a statistically significant difference in the paracentral zone. In the mid-peripheral zone, the ET increased by 14.1 % from the reference. Max and Min ET, and Max-Min Std Dev in the 5-mm zone differed significantly after OK correction (p < 0.05). Conclusion. After OK correction, the ET significantly decreases in the central zone and increases in the mid-peripheral zone. These changes account for the flattening of the anterior corneal surface and contribute to the refractive effect of OK lenses. For citations: Milash S.V., Tarutta E.P. Changes of corneal epithelial thickness before and after OK-correction according to SD-OCT. Russian ophthalmological journal. 2017; 10 (3): 49-54. doi: 10.21516/2072-0076-2017-10-3-49-54 (in Russian).

About the Authors

S. V. Milash
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation


E. P. Tarutta
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation


References

1. Thomasy S.M., Krishna Raghunathan V., Winkler M., et al. Elastic modulus and collagen organization of the rabbit cornea: epithelium to endothelium. Acta biomaterialia. 2014; 10(2): 785-91. doi: 10.1016/j.actbio.2013.09.025

2. Reinstein D.Z., Archer T.J., Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J. Refract. Surg. 2009; 25: 604-10.

3. Li Y., Tan O., Brass R., Weiss J.L., Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology. 2012; 119: 2425-33. doi: 10.1016/j.ophtha.2012.06.023

4. Kanellopoulos A.J., Asimellis G. OCT corneal epithelial topographic asymmetry as a sensitive diagnostic tool for early and advancing keratoconus. Clin. Ophthalmol. 2014; 8: 2277-87. doi: 10.2147/opth.S67902

5. Клокова О.А., Фомин А.В., Дамашаускас Р.О., Розенкранц М.К., Клоков А.В. Особенности состояния эпителия роговицы после рефракционных вмешательств по данным AVANTI RTVue XR. Современные технологии в офтальмологии. 2014; 3:152. doi: 10.1186/s40662-015-0031-5.

6. Chen X., Stojanovic A., Wang X., et al. Epithelial thickness profile change after combined topography-guided transepithelial photorefractive keratectomy and corneal cross-linking in treatment of keratoconus. Journal of Refractive Surgery. 2016; 32(9): 626-34. doi: 10.3928/1081597X-20160531-02

7. Haque S., Fonn D., Simpson T., Jones L. Corneal and epithelial thickness changes after 4 weeks of overnight corneal refractive therapy lens wear, measured with optical coherence tomography. Eye Contact Lens. 2004; 30(4): 189-93.

8. Нагорский П.Г., Белкина В.В., Глок М.А., Черных В.В. Состояние эпителия и стромы роговицы детей с миопией, использующих ортокератологические линзы (по данным оптической когерентной томографии). Современная оптометрия. 2012; 2: 18-27.

9. Qian Y., Xue F., Huang J., et al. Pachymetry map of corneal epithelium in children wearing orthokeratology contact lenses. Curr Eye Res. 2014; 39: 263-70. doi: 10.3109/02713683.2013.841259

10. Reinstein D.Z., Gobbe M., Archer T.J., Couch D., Bloom B. Epithelial, stromal, and corneal pachymetry changes during orthokeratology. Optom. Vis. Sci. 2009, 8: E1006-E1014. doi: 10.1097/OPX.0b013e3181b18219

11. Zhong X. Chen X., Xie R.Z., et al. Differences between overnight and long-term wear of orthokeratology contact lenses in corneal contour, thickness, and cell density. Cornea. 2009; 3: 271-9. doi: 10.1097/ICO.0b013e318186e620

12. Matsubara M., Kamei Y., Takeda S., et al. Histologic and histochemical changes in rabbit cornea produced by an orthokeratology lens. Eye Contact Lens. 2004; 30: 198-204. doi: 10.1097/01.ICL.0000143635.74169.42

13. Choo J.D., Caroline P.J., Harlin D.D., Papas E.B., Holden B.A. Morphologic changes in cat epithelium following continuous wear of orthokeratology lenses: a pilot study. Cont Lens Anterior Eye. 2008; 31: 29-37. doi: 10.1016/j.clae.2007.07.002

14. Cheah P.S., Norhani M., Bariah M.A., et al. Histomorphometric profile of the corneal response to short-term reverse-geometry orthokeratology lens wear in primate corneas: a pilot study. Cornea. 2008; 27: 461-70. doi: 10.1097/ICO.0b013e318165642c

15. Ma Y., He X., Zhu X., et al. Corneal Epithelium Thickness Profile in 614 Normal Chinese Children Aged 7-15 Years Old. Scientific Reports. 2016; 6: 23482. doi: 10.1038/srep23482

16. Yang Y., Hong J., Deng S.X., Xu J. Age-related changes in human corneal epithelial thickness measured with anterior segment optical coherence tomography. Invest. Ophthalmol. Vis Sci. 2014; 55: 5032-8. doi: 10.1167/iovs.13-13831

17. Kim B.J., Ryu I.H., Lee J.H., Kim S. W. Correlation of sex and myopia with corneal epithelial and stromal thicknesses. Cornea. 2016; 35(8): 1078-83. doi: 10.1097/ICO.0000000000000850

18. Werkmeister R. M., Alex A., Kaya S. et al. Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci.2013; 54(8): 5578-83. doi: 10.1167/iovs.13-11920

19. Тарутта Е.П., Вержанская Т.Ю. Возможные механизмы тормозящего влияния ортокератологических линз на прогрессирование миопии. Российский офтальмологический журнал. 2008; 1(2): 26-30.

20. Smith E., 3rd. Prentice Award Lecture 2010: a case for peripheral optical treatment strategies for myopia. Optom. Vis. Sci. 2011; 88: 1029-44. doi: 10.1097/OPX.0b013e3182279cfa


Review

For citations:


Milash S.V., Tarutta E.P. Changes of corneal epithelial thickness before and after OK-correction according to SD-OCT. Russian Ophthalmological Journal. 2017;10(3):49-54. (In Russ.) https://doi.org/10.21516/2072-0076-2017-10-3-49-54

Views: 730


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)