Preview

Russian Ophthalmological Journal

Advanced search

Risk factors as glaucoma predictors in myopic students

https://doi.org/10.21516/2072-0076-2022-15-4-30-37

Abstract

Purpose: identification of early risk factors — predictors of POAG development in students with myopic refraction based on questionnaire and functional test data and the effects of fractal photostimulation (FS). Material and methods. The study involved two clinical groups: the main group of 24 students (48 eyes) with mild to moderate myopia, averagely aged 21.3 ± 0.7 years, and the comparison group (according to FS effects) of 29 patients (58 eyes) with an established diagnosis of stage I–III POAG, averagely aged 58 ± 18 years, and a control group consisting of 66 people (132 eyes, mean age 21.2 ± 1.3 years). The case history of patients and typical complaints were found in questionnaire data. For the two clinical groups, the impact of 10 low-intensity FS sessions was evaluated. Results. A set of features viewed as risk factors for POAG development was determined using the data of the questionaries filled in by the main and comparison groups. The changes in mean IOP values measured before and after an FS course were found to be greater in POAG patients than in myopic students. FS was shown to contribute to IOP stabilization in patients with pre-existing morphological and functional glaucoma changes and the occurrence of accompanying pathologies such as vasospasm, blood pressure fluctuations, and migraine-like pain. After a course of FS, overall photosensitivity increased significantly as compared with the baseline in students with mild and moderate myopia (p < 0.05). Also, a positive effect of an FS course on MD indices in patients with stages IIa and IIIa POAG was confirmed. Conclusion. The research results confirm the need to identify clinical and functional predictors of POAG with a progressive glaucomatous process in students with myopic refraction.

About the Authors

M. A. Kovalevskaya
N.N. Burdenko Voronezh State Medical University
Russian Federation

Maria A. Kovalevskaya — Dr. of Med. Sci., professor, head of chair of ophthalmology

10, Studencheskaya St., Voronezh, 394036



V. B. Antonyan
N.N. Burdenko Voronezh State Medical University
Russian Federation

Veronika B. Antonyan — PhD student, assistant, chair of ophthalmology

10, Studencheskaya St., Voronezh, 394036



E. V. Muntianova
N.N. Burdenko Voronezh State Medical University
Russian Federation

Ekaterina V. Muntianova — resident, chair of ophthalmology

10, Studencheskaya St., Voronezh, 394036



M. V. Zueva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Marina V. Zueva —Dr. Biol. Sci., professor, head of the department of clinical physiology of vision named after S.V. Kravkov

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Zhuravleva A.N., Kiseleva O.A., Kirillova M.O. Personalized medicine in solving the problem of glaucoma. Russian ophthalmological journal. 2019; 12 (3): 95–100 (in Russian). doi:10.21516/2072-0076-2019-12-3-95-100

2. Tham Y. C., Li X., Wong T. Y., et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121 (11): 2081–90. doi:10.1016/j.ophtha.2014.05.013

3. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006; 90 (3): 262–7. doi:10.1016/s00029394(14)72088

4. Sotimehin A.E., Ramulu P.Y. Measuring Disability in Glaucoma. Glaucoma. 2018; 27 (11): 939–49. doi:10.1097/IJG.0000000000001068

5. Primary open-angle glaucoma. Federal'nye klinicheskie rekomendacii. Moscow; 2020 (in Russian). Available at http://avo-portal.ru/doc/fkr/item/246-glaukoma-otkrytougolnaya

6. Neroev V.V. Vision disability in the Russian Federation. Belye nochi; 2018. Available at: http://avo-portal.ru/events/reports/item/266-invalidnost-po-zreniyu-v-rossiyskoy-federatsii (in Russian).

7. Myopia. Federal'nye klinicheskie rekomendacii. Moscow; 2020 (in Russian). Available at http://avo-portal.ru/documents/fkr/odobr/Миопия.pdf

8. Kazakova A.V., Eskina E.N. Diagnostics of glaucoma in case of axial myopia. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2014; 173 (12): 152–5 (in Russian).

9. Moshetova L.K., Koretskaya Yu.M. Glaucoma of the myopic eye. Russian Medical Journal. 2003 (in Russian). Available at: https://www.rmj.ru/articles/oftalmologiya/Glaukoma_miopicheskogo_glaza/

10. Avetisov S.E., Bubnova I.A., Antonov A.A. Investigation of the effect of biomechanical properties of the cornea on tonometric indicators. Sibirskij nauchnyj medicinskij zhurnal. 2009; 29 (4): 30–3 (in Russian).

11. Kozina E.V., Pospelov V.I., Gololobov V.T., et al. The state of visual acuity and eye refraction in medical university students. Sibirskoe medicinskoe obozrenie. 2015; 93 (3): 88–92 (in Russian). doi:10.20333/25000136-2015-3-88-92

12. Avetisov E.S. Myopia. Moscow: Meditsina; 1999 (In Russian).

13. Grytz R., Yang H., Hua Y., Samuels B.C., Sigal I.A. Connective tissue remodeling in myopia and its potential role in increasing risk of glaucoma. Current opinion in biomedical engineering. 2020; 15: 40–50. doi:10.1016/j.cobme.2020.01.001

14. Lebedev O.I., Kalizhnikova E.A., Yarovskiy A.E. Top-list of management of patients with glaucoma: tonometry. Glauсoma 2013; 4: 43–51 (in Russian).

15. Joseph D.S, Thampi B., Joosadima A., Mohan. A. A study on association between intraocular pressure and myopia. International Journal of Research in Medical Sciences. 2017; 4 (6): 2202–5. doi:10.18203/2320-6012.ijrms20161786

16. Gupta N., Aung T., Congdon N., et al. ICO Guidelines for Glaucoma Eye Care. Intermational Council of Ophthalmology. 2016. Available at: http://www.glaucomaclinic.com/wp-content/uploads/2016/12/ICOGlaucomaGuidelines.pdf

17. Coleman A.L., Kodjebacheva G. Risk factors for glaucoma needing more attention. Open Ophthalmol. J. 2009; 17 (3): 38–42. doi:10.2174/1874364100903020038

18. Coleman A.L., Cummings S.R., Yu F., et al. Binocular visual-field loss increases the risk of future falls in older white women. J. Am. Geriatr. Soc. 2007; 55 (3): 357–64. doi:10.1111/j.1532-5415.2007.01094.x

19. Law S.K. Asian Americans: glaucoma. Int. Ophthalmol. Clin. 2003; 43 (4): 133–49. doi:10.1097/00004397-200343040-00013

20. Mitchell P., Smith W., Attebo K., Healey P.R. Prevalence of open-angle glaucoma in Australia. The Blue Mountains eye study. Ophthalmology. 1996; 103 (10): 1661–9. doi:10.1016/s0161-6420(96)30449-1

21. Tielsch J.M., Sommer A., Katz J., Quigley H., Ezrine S. Socioeconomic status and visual impairment among urban Americans. Arch. Ophthalmol. 1991; 109 (5): 637–41. doi:10.1001/archopht.1991.01080050051027

22. Worley A., Grimmer-Somers K. Risk factors for glaucoma: what do they really mean? Austr. J. Prim. Health. 2011; 17 (3): 233–9. doi:10.1071/PY10042

23. Francardo V., Schmitz Y., Sulzer D., Cenci M.A. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp. Neurol. 2017; 298 (Pt B): 137–47. https://doi.org/10.1016/j.expneurol.2017.10.001

24. Gidday J.M. Adaptive plasticity in the retina: protection against acute injury and neurodegenerative disease by conditioning stimuli. Cond. Med. 2018; 1 (2): 85–97. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696944/

25. Neroev V.V., Zueva M.V., Zhuravleva A.N., Tsapenko I.V. Structural and functional disorders in glaucoma: the prospects for preclinical diagnosis. Part 1. Is the search for what comes first relevant? Oftal'mologija. 2020; 17 (3): 336–43 (in Russian). doi:10.18008/1816-5095-2020-3-336-343

26. Morgan J.E., Datta A.V., Erichsen J.T., Albon J., Boulton M.E. Retinal ganglion cell remodeling in experimental glaucoma. Advances in Experimental Medicine and Biology. 2006; 572: 397–402. doi:10.1007/0-387-32442-9_56

27. Morquette J.B., Di Polo A. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon? J. Neuroophthalmol. 2008; 28 (2): 144–54. doi:10.1097/wno.0b013e318177edf0

28. El-Danaf R.N., Huberman A.D. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J. Neurosci. 2015; 35 (6): 2329–43. doi:10.1523/JNEUROSCI.1419-14.2015

29. Ly T., Gupta N., Weinreb R.N., Kaufman P.L., Yucel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vision Res. 2011; 51 (2): 243–50. doi:10.1016/j.visres.2010.08.003

30. Porciatti V., Ventura L.M. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J. Neuroophthalmol. 2012; 32 (4): 354–8. doi:10.1097/WNO.0b013e3182745600

31. Zueva M.V. Dynamics of retinal ganglion cell death in glaucoma and its functional markers. Nacional'nyj zhurnal glauсoma. 2016; 15 (1): 70–85 (in Russian).

32. Zueva M.V., Zhuravleva A.N., Bogolepova A.N. Dendritic branching of retinal ganglion cells as a biomarker of glaucomatous optic neuropathy and Alzheimer’s disease and a target of neuroprotective therapy. Oftal'mologija. 2021; 18 (2): 198–207 (in Russian). doi:10.18008/1816-5095-2021-2-198-207

33. Zueva M.V., Kovalevskaya M.A., Donkareva O.V., et al. Fractal phototherapy in neuroprotection of glaucoma. Oftal'mologija. 2019; 16 (3): 317–28 (in Russian). doi:10.18008/1816-5095-2019-3-317-328

34. Zueva M.V., Karankevich A.I. Stimulator with complex structured optical signals and the method of its use. Patent EAPO 035247; 2020 (in Russian).

35. Zueva M.V., Karankevich A.I., Zuev T.A. A method to train the brain. Patent RF 2671199 S1; 2017 (in Russian).

36. Zueva M.V. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scaleinvariance and fractal complexity of the visible world. Front. Aging. Neurosci. 2015; 7: 135. doi:10.3389/fnagi.2015.00135

37. Zueva M.V. Technologies of nonlinear stimulation: role in the treatment of diseases of the brain and the potential applications in healthy indivi-duals. Fiziologija cheloveka. 2018; 44 (3): 289–99 (in Russian). doi:10.1134/S0362119718030180

38. SR 52.13330.2016 Natural and artificial lighting. Updated edition of SRR 23-05-95. Available at: http://docs.cntd.ru/document/456054197 (in Russian).

39. Mardin C.Y., Horn F.K., Jonas J.B. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Br. J. Ophthalmol. 1999; 83 (3): 299–304. doi:10.1136/bjo.83.3.299

40. Machekhin V.A., Fabrikantov O.L., Lvov V.A. Preperimetric glaucoma (literature review). Medicina. 2019; 26 (2): 59–80 (in Russian). doi:10.29234/2308-9113-2019-7-2-59-80

41. Sun M.J., Rubin G.S., Akpek E.K., Ramulu P.Y. Impact of glaucoma and dry eye on text-based searching. Transl. Vis. Sci Technol. 2017; 6 (3): 24. doi:10.1167/tvst.6.3.24


Review

For citations:


Kovalevskaya M.A., Antonyan V.B., Muntianova E.V., Zueva M.V. Risk factors as glaucoma predictors in myopic students. Russian Ophthalmological Journal. 2022;15(4):30-37. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-4-30-37

Views: 667


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)