Prevalence of myopia and epidemiological factors contributing to its development
https://doi.org/10.21516/2072-0076-2022-15-4-144-149
Abstract
Myopia, which is the most common disorder of refraction, in case of progression causes a variety of dangerous and severe complications, which can eventually lead to a significant decrease in the quality of life and disability in young and working age people. The growing trend of myopia prevalence is due to a significant increase in visual work and psychological stress, which, in their turn, are explained by rapid scientific and technological progress and extensive urbanization. The genetic, ethnic and age factors, as well as the presence of chronic diseases and general lifestyle, also play an important role in the onset of myopia.
About the Authors
A. E. AprelevRussian Federation
Alexander E. Aprelev — Dr. of Med. Sci., docent, head of chair of
ophthalmology
6, Sovetskaya St., Orenburg, 460000
S. V. Cherkasov
Russian Federation
Sergei V. Cherkasov — Dr. of Med. Sci., corresponding member of the Russian Academy of Sciences, director
29, Naberezhnaya St., Orenburg, 460014
A. A. Aprelev
Russian Federation
Alexander A. Aprelev — 6th year student
6, Sovetskaya St., Orenburg, 460000
P. S. Cherkasova
Russian Federation
Polina S. Cherkasova — 5th year student
6, Sovetskaya St., Orenburg, 460000
P. E. Serebryakova
Russian Federation
Polina E. Serebryakova — 4th year student
6, Sovetskaya St., Orenburg, 460000
References
1. Naidoo K.S., Fricke T.R., Frick K.D., et al. Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling. Ophthalmology. 2018; 126 (3): 338–46. doi:10.1016/j.ophtha.2018.10.029
2. Ikuno Y. Overview of the complications of high myopia. Retina. 2017; 37 (12): 2347–51. doi:10.1097/iae.0000000000001489
3. Tarutta E.P., Iomdina E.N., Tarasova N.A., Markosjan G.A., Maksimova M.V. Complex approach to the prevention and treatment of progressive myopia in school children. Russian Journal of Clinical Ophthalmology. 2018; 18 (2): 70–6 (in Russian). doi:10.21689/2311-77292018-18-2-70-76
4. Holden B.A., Fricke T.R., Wilson D.A., et al. Global Prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016; 123 (5): 1036–42. doi:10.1016/j.ophtha.2016.01.006
5. Ding B.Y., Shih Y.F., Lin L.L.K., Hsiao C.K., Wang I.J. Myopia among schoolchildren in East Asia and Singapore. Survey of Ophthalmology. 2017; 62 (5): 677–97. doi:10.1016/j.survophthal.2017.03.006
6. Denner V.A., Fedjunina P.S., Davletshina O.V., Nabatchikova M.V. Scientific review of the issue of child disability as a medical and social problem. Molodoj uchenyj. 2016; 20 (124): 71–5 (in Russian).
7. Proskurina O.V., Markova E.Ju., Brzheskij V.V., et al. The prevalence of myopia in schoolchildren in some regions of Russia. Oftal'mologija. 2018; 15 (3): 348–53 (in Russian). doi:10.18008/1816-50952018-3-348-353
8. Khvatova A.V., Arestova N.N., Kravtsov K.G. Modern tendencies of nosologic structure change of blindness and low vision in children visually disabled from childhood. Rossijskaja pediatricheskaja oftal'mologija. 2008; 1: 13–5 (in Russian).
9. Li J., Gao B., Xiao X., et al. Exome sequencing identified null mutations in LOXL3 associated with early-onset high myopia. Molecular Vision. 2016; 22: 161–67. PMID: 26957899
10. Cooper J., Tkachenko A.V. Review of current concepts of the etiology and treatment of myopia. Eye Contact Lens: Science Clinical Practice. 2018; 44 (4): 231–47. doi:10.1097/icl.0000000000000499
11. Li J., Zhang Q. Insight into the molecular genetics of myopia. Molecular Vision. 2017; 23: 1048–80. PMID: 29386878
12. Wiesel TN., Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature. 1977; 266 (5597): 66–8. doi:10.1038/266066a0
13. Raviola E., Wiesel T.N. Effect of dark-rearing on experimental myopia in monkeys. Invest. Ophthalmol. Vis. Sci. 1978; 17 (6): 485–8.
14. Tideman J.W.L., Polling J.R., Jaddoe V.W., Vingerling J.R., Klaver C.C. Environmental risk factors can reduce axial length elongation and myopia incidence in 6to 9-year-old children. Ophthalmology. 2018; 126 (1): 127–36. doi:10.1016/j.ophtha.2018.06.029
15. Zhou X., Lu F., Xie R., et al. Recovery from axial myopia induced by a monocularly deprived facemask in adolescent (7-week-old) guinea pigs. Vision Research. 2007; 47 (8): 1103–11. doi:10.1016/j.visres.2007.01.002
16. Troilo D., Wallman J. The regulation of eye growth and refractive state: An experimental study of emmetropization. Vision Research. 1991; 31 (7–8): 1237–50. doi:10.1016/0042-6989(91)90048-a
17. Rada J.A., Shelton S., Norton T.T. The sclera and myopia. Experimental Eye Research. 2006; 82 (2): 185–200. doi:10.1016/j.exer.2005.08.009
18. Smith E.L. Prentice award lecture 2010: A case for peripheral optical treatment strategies for myopia. Optom. Vis. Sci. 2011; 88 (9): 1029–44. doi:10.1097/opx.0b013e3182279cfa
19. Wildsoet C., Pettigrew J. Experimental myopia and anomalous eye growth patterns unaffected by optic nerve section in chickens: Evidence for local control of eye growth. Clinic. Vis. Sci. 1988; 3 (2): 99–107.
20. Cooper J., Schulman E., Jamal N. Current status on the development and treatment of myopia. Optometry. 2012; 83 (5): 179–99.
21. Tideman J.W.L., Polling J.R., Hofman A., et al. Environmental factors explain socioeconomic prevalence differences in myopia in 6-yearold children. Br. J. Ophthalmol. 2017; 102 (2): 243–47. doi:10.1136/bjophthalmol-2017-310292
22. Lundberg K., Thykjaer A.S., Hansen R.S., et al. Physical activity and myopia in Danish children – The CHAMPS Eye Study. Acta Ophthalmol. 2017; 96 (2): 134–41. doi:10.1111/aos.13513
23. Shah R.L., Huang Y., Guggenheim J.A., Williams C. Time outdoors at specific ages during early childhood and the risk of incident myopia. Invest. Opthalmol. Vis. Sci. 2017; 58 (2): 1158–66. doi:10.1167/iovs.16-20894
24. Jin J.X., Hua W.J., Jang X., et al. Effect of outdoor activity on myopia onset and progression in school-aged children in Northeast China: the Sujiatun eye care study. BMC Ophthalmol. 2015; 15: 73. doi:10.1186/s12886-015-0052-9
25. Wu P.C., Chen C.T., Lin K.K., et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology. 2018; 125 (8): 1239–50. doi:10.1016/j.ophtha.2017.12.011
26. Hagen L.A., Gjelle J.V.B., Arnegard S., et al. Prevalence and Possible Factors of Myopia in Norwegian Adolescents. Sci Rep 2018; 8: 13479. https://doi.org/10.1038/s41598-018-31790-y
27. Ramamurthy D., Lin Chua S.Y., Saw S.M. A review of environmental risk factors for myopia during early life, childhood and adolescence. Clin. Exp. Optom. 2015 Nov; 98 (6): 497–506. doi:10.1111/cxo.12346
28. Jiang Y., Tian B. Understanding modifiable risk factors for the development of myopia. Ophthalmology. 2018; 126 (2): 221–2. doi:10.1016/j.ophtha.2018.09.001
29. Tarutta E.P., Proskurina O.V., Tarasova N.A., Ibatulin R.A., Kovychev A.S. Myopia predictors as a starting point for active prevention of myopia development. Russian ophthalmological journal. 2018; 11 (3): 107–12 (in Russian). doi:10.21516/2072-0076-2018-11-3-107-112
30. Hsu C.C., Huang N., Lin P.Y. Risk factors for myopia progression in secondgrade primary school children in Taipei: a population-based cohort study. Br. J. Ophthalmol. 2017; 101 (12): 1611–7. doi:10.1136/bjophthalmol-2016-309299
31. Dubko D.A., Egorov V.V., Smoliakov G.P. Neurovegetative mechanisms of progressive myopia in schoolchildren. Rossijskaya detskaya oftal’mologija. 2017; 2: 33–40 (in Russian).
32. Matveev A.V., Guseva M.R., Markova E.Ju., Ul'shina L.V., Kuznetsova Ju.D. Correction of oxidative stress and hemodynamic changes in myopia. Rossijskaja pediatricheskaja oftal'mologija. 2012; 1: 22–5 (in Russian)].
33. Jiang X., Kurihara T., Torii H., Tsubota K. Progress and control of myopia by light environments. Eye Contact Lens. 2018; 44 (5): 273–8. doi:10.1097/icl.0000000000000548
34. Rucker F., Henriksen M., Yanase T., Taylor C. The role of temporal contrast and blue light in emmetropization. Vis. Res. 2018; 151: 78–87. doi:10.1016/j.visres.2017.07.003
35. Kapcov V.A., Dejnego V.N. Risks of age-related macular degeneration and led lighting. Health Risk Analysis. 2017; 4: 129–46 (in Russian). doi:10.21668/health.risk/2017.4.14
36. Ku P.W., Steptoe A., Lai Y.J. The associations between near visual activity and incident myopia in children. Ophthalmology. 2019; 126 (2): 214–20. doi:10.1016/j.ophtha.2018.05.010
37. Avetisov E.S. Myopia. Moscow: Meditsina; 1999 (in Russian).
38. Levchenko O.G., Drukman A.B. Relationship between anatomical-optical and functional parameters of the eyes during the development of myopia. Vestnik oftal'mologii. 1982; 5: 36–9 (in Russian).
39. Neroev V.V., Tarutta E.P., Arutjunjan S.G., Khandzhjan A.T., Khodzhabekjan N.V. Wavefront aberrations and accommodation in myopia. Vestnik oftal'mologii. 2017; 133 (2): 5–9 (in Russian). doi:10.17116/oftalma201713324-9
40. Hung G.K., Ciuffreda K.J. An incremental retinal-defocus theory of the development of myopia. Comments on Theoretical Biology. 2003; 8 (4–5): 511–80. doi:10.1080/08948550302433
41. Walman J., Wildsoet C., Xu A. Moving the retina: choroidal modulation of refractive state. Vision Research. 1995; 35 (1): 37–50. doi:10.1016/00426989(94)e0049-q
Review
For citations:
Aprelev A.E., Cherkasov S.V., Aprelev A.A., Cherkasova P.S., Serebryakova P.E. Prevalence of myopia and epidemiological factors contributing to its development. Russian Ophthalmological Journal. 2022;15(4):144-149. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-4-144-149