Choosing the cataract surgery approach on the basis of spectrofluorometric examination of the of lens
Аннотация
Ключевые слова
Об авторах
В. В. ГарькавенкоРоссия
В. В. Салмин
Россия
В. И. Лазаренко
Россия
К. А. Шаповалов
Россия
Список литературы
1. Буррато Л. Хирургия катаракты. Москва; 1999.
2. Chen D.Z., Tan C.W. Smartphone imaging in ophthalmology: a comparison with traditional methods on the reproducibility and usability for anterior segment imaging. Ann. Acad. Med. Singapore. 2016; 45(1): 6-11.
3. Resnikoff S., Pascolini D., Etya'ale D., et al. Global data on visual impairment in the year 2002. Bull. World Health Organ. 2004; 82 (11): 844-51.
4. Davison J.A., Chylack L. T. Jr. Clinical application of the lens opacities classification system III in the performance of phacoemulsification. J. Cataract Refract. Surg. 2003; 29: 138-45
5. Leon P., Umari I., Mangogna A., Zanei A., Tognetto D. An evaluation of intraoperative and postoperative outcomes of torsional mode versus longitudinal ultrasound mode phacoemulsification: a meta-analysis. Int. J. Ophthalmol. 2016; 9(6): 890-7.
6. Nixon D.R. Preoperative cataract grading by Scheimpflug imaging and effect on operative fluidics and phacoemulsification energy. J. Cataract. Refract. Surg. 2010; 36: 242-46.
7. Siik S. Lens autofluorescence and light scatter in relation to the lens opacities classification system, LOCS III. Acta Ophthalmol. Scand. 1999; 77(5): 509-14
8. Burd J., Lum S., Cahn F., Ignotz K. J. Diabetes Sci. Technol. 2012; 6(6): 1251-9.
9. Klemm M., Schweitzer D., Peters S., et al. FLIMX: A Software package to determine and analyze the fluorescence lifetime in time-resolved fluorescence data from the human eye. PLoS One. 2015; 10(7): e0131640. https://doi.org/10.1371/journal.pone.0131640.
10. Topakova A. A., Salmin V. V., Gar’kavenko V. V., Levchenko J. S., Lazarenko V. I. Development of optoelectronic hardware: program complex for the analysis of hypoxia in the anterior eye camera in persons wearing contact lenses. Proc. SPIE 9917, Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish-Russian Photonics and Laser Symposium (PALS), 991715 (21 April 2016); doi: 10.1117/12.2229816; http://dx.doi.org/10.1117/12.2229816
11. Salmin V., Gar'kavenko V., Levchenko J. UVA-induced autofluorescence spectroscopy in ophthalmology. In: Asia Communications and Photonics Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper ATh3A.203. https://doi.org/10.1364/ACPC.2014.ATh3A.203
12. Makley L. N., McMenimen K. A., DeVree B. T., et al. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science. 2015; 350(6261):674-7. doi:10.1126/science.aac9145.
13. Davson H. Physiology of the Eye. New York San Francisco: Academic Press; 1980: 116-64.
14. Владимирова Е. С., Салмин В.В., Салмина А.Б. Флуоресцентная диагностика состояния хрусталика человека in vivo. Журнал прикладной спектроскопии. 2012; 79(1): 136-40.
15. Шаповалов К.А., Салмин В.В., Лазаренко В.И., Гарькавенко В.В. Моделирование спектров аутофлуоресценции хрусталика при катаракте с учетом светорассеяния. Журнал прикладной спектроскопии. 2017; 2: 258-63.
Для цитирования:
Гарькавенко В.В., Салмин В.В., Лазаренко В.И., Шаповалов К.А. . Российский офтальмологический журнал. 2017;10(4):16-19. https://doi.org/10.21516/2072-0076-2017-10-4-16-19
For citation:
Gar’Kavenko V.V., Salmin V.V., Lazarenko V.I., Shapovalov K.A. Choosing the cataract surgery approach on the basis of spectrofluorometric examination of the of lens. Russian Ophthalmological Journal. 2017;10(4):16-19. (In Russ.) https://doi.org/10.21516/2072-0076-2017-10-4-16-19