Preview

Российский офтальмологический журнал

Расширенный поиск

Неоваскуляризация роговицы: современный взгляд на молекулярные механизмы и методы терапии

https://doi.org/10.21516/2072-0076-2023-16-2-153-159

Аннотация

В обзоре литературы подробно освещены вопросы этиологии, патогенеза и молекулярных механизмов неоваскуляризации роговицы. Описаны сигнальные молекулы, участвующие в процессе неоваскулогенеза, а также их антагонисты — антиангиогенные факторы. На основе клинических исследований описана роль сигнальных белков — фактора роста эндотелия сосудов (VEGF), матричных металлопротеиназ и их рецепторов в качестве современных мишеней терапии. Представлены возможности генной и биоинженерной терапии — перспективных методов лечения неоваскуляризации роговицы. 

Об авторах

Г. Ш. Аржиматова
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России; Московский городской офтальмологический центр (МГОЦ) ГБУЗ «Городская клиническая больница им. С.П. Боткина» департамента здравоохранения Москвы
Россия

Гульжиян Шевкетовна Аржиматова, канд. мед. наук, доцент кафедры офтальмологии, ул. Баррикадная, д. 2/1, стр. 1, Москва, 125993;

руководитель офтальмологического центра, 2-й Боткинский пр-д, д. 5, Москва, 125284



Э. А. Салихов
Московский городской офтальмологический центр (МГОЦ) ГБУЗ «Городская клиническая больница им. С.П. Боткина» департамента здравоохранения Москвы
Россия

Эльдар Амирович Салихов, канд. мед. наук, заведующий офтальмологическим  отделением № 602, 2-й Боткинский пр-д, д. 5, Москва, 125284



М. Ю. Шемякин
Московский городской офтальмологический центр (МГОЦ) ГБУЗ «Городская клиническая больница им. С.П. Боткина» департамента здравоохранения Москвы
Россия

Матвей Юрьевич Шемякин, врач-офтальмолог офтальмологического отделения № 64 МГОЦ, 2-й Боткинский пр-д, д. 5, Москва, 125284



Список литературы

1. Lee P, Wang CC, Adamis AP. Ocular Neovascularization. Survey of Ophthalmology. 1998; 43 (3): 245–69. doi: 10.1016/s0039-6257(98)00035-6

2. Gonz lez-Andrades M,. Garz n I, Gasc n MI, et al. Sequential development of intercellular junctions in bioengineered human corneas. J Tissue Eng Regen Med. 2009; (3): 442–9. doi: 10.1002/term.178

3. Qazi Y, Wong G, Monson B, Stringham J, Ambati BK. Corneal transparency: Genesis, maintenance and dysfunction. Brain Research Bulletin. 2010; 81 (2–3): 198–210. doi: 10.1016/j.brainresbull.2009.05.019

4. Oldman JN, Benedek GB. The relationship between morphology and transparency in the non-swelling corneal stroma of the shark. Invest Ophthalmology. 1967; 6 (6): 574–600.

5. Lim JJ. Na+ transport across the rabbit corneal epithelium. Curr Eye Res. 1981; 1 (4): 255–8. doi: 10.3109/02713688109001856

6. Lim JJ, Ussing HH. Analysis of presteady-state Na+ fluxes across the rabbit corneal endothelium. J Membrane Biol. 1982; (65): 197–204. https://doi.org/10.1007/bf01869963

7. Stiemke MM, Edelhauser HF, Geroski DH. The developing corneal endothelium: correlation of morphology, hydration, and Na/K ATPase pump site density. Curr Eye Res. 1991; 10 (2): 145–56. https://doi.org/10.3109/02713689109001742

8. Edelhauser HF. Castroviejo lecture: the resiliency of the corneal endothelium to refractive and intraocular surgery. Cornea. 2000; 19 (3): 263–73. https://doi.org/10.1097/00003226-200005000-00002

9. Armitage WJ, Dick AD, Bourne WM. Predicting endothelial cell loss and long-term corneal graft survival. Invest Ophthalmol Vis Sci. 2003; 44 (3): 326–31 https://doi.org/10.1167/iovs.02-1255

10. Matsuda M, Yee RW, Edelhauser HF. Comparison of the corneal endothelium in an American and a Japanese population. Arch Ophthalmology. 1985; 103 (1): 68–70. https://doi.org/10.1001/archopht.1985.0105000072023

11. Kvanta A. Ocular angiogenesis: the role of growth factors. Acta Ophthalmol Scand. 2006; 84 (3): 282–8. https://doi.org/10.1111/j.1600-0420.2006.00659.x

12. Burger PC, Chandler DB, Klintworth GK. Corneal neovascularization as studied by scanning electron microscopy of vascular casts. Lab Invest. 1983; 48 (2): 169–80.

13. Zhang S X, Ma J. Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res. 2007; 26 (1): 1–37. doi: 10.1016/j.preteyeres.2006.09.002

14. Menzel-Severing J Emerging techniques to treat corneal neovascularisation. Eye. 2011; 26 (1): 2-12. doi: 10.1038/eye.2011.246

15. Liesegang TJ. Physiologic changes of the cornea with contact lens wear. CLAO J. 2002; 28 (1): 12-27. PMID: 11838985.

16. Wuest T, Zheng M, Efstathiou S, et al. The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent neovascularization. PLoS Pathog. 2011; 7 (10): e1002278. https://doi.org/10.1371/journal.ppat.1002278

17. Zheng M, Deshpande S, Lee S, Ferrara N, Rouse BT. Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis. J Virol. 2001; 75 (20): 9828–35. 2001. https://doi.org/10.1128/JVI.75.20.9828-9835.2001

18. Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci. 2000; 41 (9): 2514–22.

19. Penn JS, Madan A, Caldwell RB, et al. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 2008; 27 (4): 331–71. https://doi.org/10.1016/j.preteyeres.2008.05.001

20. Chung ES, Chauhan SK, Jin Y, et al. Contribution of macrophages to angiogenesis induced by vascular endothelial growth factor receptor-3-specific ligands. Am J Pathol. 2009; 175 (5): 1984–92. https://doi.org/10.2353/ajpath.2009.080515

21. Clements JL, Dana R. Inflammatory corneal neovascularization: etiopathogenesis. Semin Ophthalmol. 2011; 26 (4–5): 235–45. doi: 10.3109/08820538.2011.588652

22. Itoh N, Ornitz DM. Evolution of the FGF and FGFR gene families. Trends Genet. 2004; 20 (11): 563–9. https://doi.org/10.1016/j.tig.2004.08.007

23. Xuan M, Wang S, Liu X, et al. Proteins of the corneal stroma: importance in visual function. Cell Tissue Res. 2016; 364 (1): 9–16. https://doi.org/10.1007/s00441-016-2372-3

24. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017; 147: 1–73. https://doi.org/10.1016/bs.pmbts.2017.02.005

25. Shi W, Liu J, Li M, Gao H, Wang T. Expression of MMP, HPSE, and FAP in stroma promoted corneal neovascularization induced by different etiological factors. Curr Eye Res. 2010; 35 (11): 967–77. https://doi.org/10.3109/02713683.2010.502294

26. Samolov B, Steen B, Seregard S, et al. Delayed inflammation-associated corneal neovascularization in MMP-2-deficient mice. Exp Eye Res. 2005; 80 (2): 159–66. https://doi.org/10.1016/j.exer.2004.08.023

27. Wells JM, Gaggar A, Blalock JE. MMP generated Matrikines. Matrix Biol. 2015; 44–6: 122–9. https://doi.org/10.1016/j.matbio.2015.01.016

28. Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005; 6 (2): 209. https://doi.org/10.1186/gb-2005-6-2-209

29. Jo N, Mailhos C, Ju M, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol. 2006; 168 (6): 2036–53. doi: 10.2353/ajpath.2006.050588

30. Fu Y-C, Xin Z-M. Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1 . Biosci Rep. 2019; 39 (1): BSR20180552. doi: 10.1042/BSR20180552

31. Han K-Y, Dugas-Ford J, Lee H, et al. MMP14 cleavage of VEGFR1 in the cornea leads to a VEGF-trap antiangiogenic effect. Invest Ophthalmol Vis Sci. 2015; 56 (9): 5450–6. https://doi.org/10.1167/iovs.14-16248

32. Strasly M, Cavallo F, Geuna M, et al. IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. J Immunol. 2001; 166 (6): 3890–9. https://doi.org/10.4049/jimmunol.166.6.3890

33. Lai L-J, Xiao X, Wu JH. Inhibition of corneal neovascularization with endostatin delivered by adeno-associated viral (AAV) vector in a mouse corneal injury model. J Biomed Sci. 2007; 14 (3): 313–22. https://doi.org/10.1007/s11373-007-9153-7

34. Qi JH, Ebrahem Q, Moore N, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003; 9 (4): 407–15. https://doi.org/10.1038/nm846

35. Hosseini H, Nowroozzadeh MH, Salouti R, et al. Anti-VEGF therapy with bevacizumab for anterior segment eye disease. Cornea. 2012; 31 (3): 322–34. https://doi.org/10.1097/ico.0b013e31822480f9

36. Cursiefen C, Colin J, Dana R, et al. Consensus statement on indications for anti-angiogenic therapy in the management of corneal diseases associated with neovascularization: outcome of an expert roundtable. Br J Ophthalmol. 2012; 96 (1): 3–9. https://doi.org/10.1136/bjo.2011.204701

37. You IC, Kang IS, Lee SH, Yoon KC. Therapeutic effect of subconjunctival injection of bevacizumab in the treatment of corneal neovascularization. Acta Ophthalmol. 2009; 87 (6): 653–8. https://doi.org/10.1111/j.1755-3768.2008.01399.x

38. Maddula S, Davis DK, Maddula S, Burrow MK, Ambati BK. Horizons in therapy for corneal angiogenesis. Ophthalmology. 2011; 118 (3): 591–9. https://doi.org/10.1016/j.ophtha.2011.01.041

39. Qazi Y, Wong G, Monson B, Stringham J, Ambati BK. Corneal transparency: genesis, maintenance and dysfunction. Brain Res. Bull. 2010; 81 (2–3): 198–210. https://doi.org/10.1016/j.brainresbull.2009.05.019

40. Koenig Y, Bock F, Horn F, et al. Short- and long-term safety profile and efficacy of topical bevacizumab (Avastin) eye drops against corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2009; 247 (10): 1375–82. https://doi.org/10.1007/s00417-009-1099-1

41. Bock F, K nig Y, Kruse F, Baier M, Cursiefen C. Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2008; 246 (2): 281–4. https://doi.org/10.1007/s00417-007-0684-4

42. DeStafeno JJ, Kim T. Topical bevacizumab therapy for corneal neovascularization. Arch. Ophthalmol. 2007; 125 (6): 834–6. https://doi.org/10.1001/archopht.125.6.834

43. Jarr n E, Ruiz-Casas D, Mendivil A. Efficacy of bevacizumab against interface neovascularization after deep anterior lamellar keratoplasty. Cornea. 2012; 31 (2): 188–90. https://doi.org/10.1097/ico.0b013e31820ca19e

44. Maddula S, Davis DK, Maddula S, Burrow MK, Ambati BK; Subconjunctival bevacizumab injection for corneal neovascularization. Cornea. 2008; 27 (2): 142–7. https://doi.org/10.1097/ico.0b013e318159019f

45. Kim SW, Ha BJ, Kim EK, Tchah H, Kim TI. The effect of topical bevacizumab on corneal neovascularization. Ophthalmology. 2008; 115 (6): e 33–8. https://doi.org/10.1016/j.ophtha.2008.02.013

46. Dursun A, Arici MK, Dursun F, et al. Comparison of the effects of bevacizumab and ranibizumab injection on corneal angiogenesis in an alkali burn induced model. Int J Ophthalmol. 2012; 5 (4): 448-51. https://doi.org/10.3980/j.issn.2222-3959.2012.04.08

47. Sella R, Gal-Or O, Livny E, et al. Efficacy of topical aflibercept versus topical bevacizumab for the prevention of corneal neovascularization in a rat model. Exp Eye Res. 2016; 146: 224-32. https://doi.org/10.1016/j.exer.2016.03.021

48. Totan Y, Aydin E, Ceki O, et al. Effect of caffeic acid phenethyl ester on corneal neovascularization in rats. Curr Eye Res. 2001; 23 (4): 291–7. https://doi.org/10.1076/ceyr.23.4.291.5453

49. Aydin E, Kivilcim M, Peyman GA, et al. Inhibition of experimental angiogenesis of cornea by various doses of doxycycline and combination of triamcinolone acetonide with low-molecular-weight heparin and doxycycline. Cornea 2008 May; 27 (4): 446–53. doi: 10.1097/ICO.0b013e3181605ff9

50. Yoeruek E, Ziemssen F, Henke-Fahle S, et al. T bingen Bevacizumab Study Group. Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn. Acta Ophthalmol. 2008; 86 (3): 322–8. https://doi.org/10.1111/j.1600-0420.2007.01049.x

51. You IC, Kang IS, Lee SH, Yoon KC. Therapeutic effect of subconjunctival injection of bevacizumab in the treatment of corneal neovascularization. Acta Ophthalmol. 2009; 87 (6): 653–8. https://doi.org/10.1111/j.1755-3768.2008.01399.x

52. Hos D, Saban DR, Bock F, et al. Suppression of inflammatory corneal lymphangiogenesis by application of topical corticosteroids. Arch Ophthalmol. 2011; 129 (4): 445–52. https://doi.org/10.1001/archophthalmol.2011.42

53. Nakao S, Hata Y, Miura M, et al. Dexamethasone inhibits interleukin1 -induced corneal neovascularization: role of nuclear factor- B-activated stromal cells in inflammatory angiogenesis. Am J Pathol. 2007; 171 (3): 1058–65. https://doi.org/10.2353/ajpath.2007.070172

54. Hos D, Saban DR, Bock F, et al. Suppression of inflammatory corneal lymphangiogenesis by application of topical corticosteroids. Arch Ophthalmol. 2011; 129 (4): 445–52. https://doi.org/10.1001/archophthalmol.2011.42

55. Utine CA, Stern M, Akpek EK. Clinical review: topical ophthalmic use of cyclosporin A. Ocul Immunol Inflamm. 2010; 18 (5): 352–61. https://doi.org/10.3109/09273948.2010.498657

56. Nomoto H, Shiraga F, Kuno N, et al. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest Ophthalmol Vis Sci. 2009; 50 (10): 4807–13. https://doi.org/10.1167/iovs.08-3148

57. Chen WL, Lin CT, Lin NT, et al. Subconjunctival injection of bevacizumab (avastin) on corneal neovascularization in different rabbit models of corneal angiogenesis. Invest Ophthalmol Vis Sci. 2009; 50 (4): 1659–65. https://doi.org/10.1167/iovs.08-1997

58. Hashemian MN, Zare MA, Rahimi F, Mohammadpour M. Deep intrastromal bevacizumab injection for management of corneal stromal vascularization after deep anterior lamellar keratoplasty, a novel technique. Cornea. 2011; 30 (2): 215–8. https://doi.org/10.1097/ico.0b013e3181e291a6

59. Mohan RR, Tovey JC, Sharma A, Tandon A. Gene therapy in the cornea: 2005–present. Prog. Retin Eye Res. 2012; 31 (1): 43–64. https://doi.org/10.1016/j.preteyeres.2011.09.001

60. He Z, Pipparelli A, Manissolle C, et al. Ex vivo gene electrotransfer to the endothelium of organ cultured human corneas. Ophthalmic Res. 2010; 43 (1): 43–55. https://doi.org/10.1159/000246577

61. Cheng HC, Yeh SI, Tsao YP, Kuo PC. Subconjunctival injection of recombinant AAV-angiostatin ameliorates alkali burn induced corneal angiogenesis. Mol Vis. 2007; 13: 2344–52.

62. Zhou SY, Xie ZL, Xiao O, et al. Inhibition of mouse alkali burn induced-corneal neovascularization by recombinant adenovirus encoding human vasohibin-1. Mol Vis. 2010; 16: 1389–98.

63. Cursiefen C, Viaud E, Bock F, et al. Aganirsen Antisense Oligonucleotide eye drops inhibit keratitis-induced corneal neovascularization and reduce need for transplantation: The I-CAN study. Ophthalmology. 2014; 121 (9): 1683–92. https://doi.org/10.1016/j.ophtha.2014.03.038

64. Rama P, Matuska S, Paganoni G, et al. Limbal stem-cell therapy and longterm corneal regeneration. N Engl J Med. 2010; 363 (2): 147–55. https://doi.org/10.1056/NEJMoa0905955


Рецензия

Для цитирования:


Аржиматова Г.Ш., Салихов Э.А., Шемякин М.Ю. Неоваскуляризация роговицы: современный взгляд на молекулярные механизмы и методы терапии. Российский офтальмологический журнал. 2023;16(2):153-159. https://doi.org/10.21516/2072-0076-2023-16-2-153-159

For citation:


Arzhimatova G.S., Salikhov E.A., Shemyakin M.Y. Corneal neovascularization: a modern view of molecular mechanisms and methods of therapy. Russian Ophthalmological Journal. 2023;16(2):153-159. (In Russ.) https://doi.org/10.21516/2072-0076-2023-16-2-153-159

Просмотров: 579


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)