Preview

Russian Ophthalmological Journal

Advanced search

Modifying treatment of degenerative retinal diseases. Part 2. Conditioning therapy techniques and the problem of maximizing retinal plasticity

https://doi.org/10.21516/2072-0076-2023-16-3-165-172

Abstract

In the first part of the review [ROJ, 2023; 16 (2): 160–2], we discussed the common and specific features of adaptive and non-adaptive retinal plasticity characteristic of glaucoma, age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and retinopathy of prematurity. The presented part of the review discusses the issues of axon regeneration of retinal ganglion cells and analyzes therapeutic approaches aimed at maximizing the plasticity and stimulating the reparative potential of the retina. The protective effects of "conditioning" stimuli in the modifying treatment of retinal diseases are considered. Some of the present-day visual rehabilitation strategies based on visual perception training and visual fixation training using biofeedback systems are reported.

About the Authors

N. V. Neroeva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Natalia V. Neroeva - Cand. of Med. Sci., ophthalmologist, department of pathology of the retina and optic nerve

4/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



M. V. Zueva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Marina V. Zueva - Dr. of Biol. Sci., professor, head of the department of clinical physiology of vision named after S.V. Kravkov

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



L. A. Katargina
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Lyudmila A. Katargina - Dr. of Med. Sci., professor, head of the department of eye pathology in children, deputy director

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



V. I. Kotelin
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Vladislav I. Kotelin - Cand. of Med. Sci., researcher, department of clinical physiology of vision named after S.V. Kravkov

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



A. N. Zhuravleva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Anastasia N. Zhuravleva - Cand. of Med. Sci., researcher, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



I. V. Tsapenko
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Irina V. Tsapenko - Cand. of Biol. Sci., chief specialist of the department of clinical physiology of vision named after S.V. K

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



D. V. Fadeev
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Denis V. Fadeev - researcher, scientific experimental center

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Crair MC, Mason CA. Reconnecting eye to brain. J Neurosci. 2016; 36 (42): 10707–22. doi: 10.1523/JNEUROSCI.1711-16.2016

2. Sauv Y, Gaillard F. Regeneration in the visual system of adult mammals. Webvision: The Organization of the Retina and Visual System [Internet. Salt Lake City (UT): University of Utah Health Sciences Center; 1995 [updated 2007 Jun 21. PMID: 21413374

3. Chen DF, Jhaveri S, Schneider GE. Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. Proc Natl Acad Sci USA. 1995; 92 (16): 7287–91. doi: 10.1073/pnas.92.16.7287

4. Vidal-Sanz M, Bray GM, Villegas-Perez MP, Thanos S, Aguayo AJ. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J Neurosci. 1987; 7: 2894–909. doi: 10.1523/JNEUROSCI.07-09-02894.1987

5. Aguayo AJ, Rasminsky M, Bray GM, et al. Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. Philos Trans R Soc Lond B Biol Sci. 1991; 331: 337–43. doi: 10.1098/rstb.1991.0025

6. Keirstead SA, Rasminsky M, Fukuda Y, et al. Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science. 1989; 246: 255–7. doi:10.1126/science.2799387

7. Sauv Y, Sawai H, Rasminsky M. Functional synaptic connections made by regenerated retinal ganglion cell axons in the superior colliculus of adult hamsters. J Neurosci. 1995; 15: 665–75. doi: 10.1523/JNEUROSCI.15-01-00665.1995

8. Espinosa JS, Stryker MP. Development and plasticity of the primary visual cortex. Neuron. 2012; 75: 230–249. doi: 10.1016/j.neuron.2012.06.009

9. Davis MF, Figueroa Velez DX, Guevarra RP, et al. Inhibitory neuron transplantation into adult visual cortex creates a new critical period that rescues impaired vision. Neuron. 2015; 86: 1055–66. doi: 10.1016/j.neuron.2015.03.062

10. Diekmann H, Leibinger M, Fischer D. Do growth-stimulated retinal ganglion cell axons find their central targets after optic nerve injury? New insights by three-dimensional imaging of the visual pathway. Exp. Neurol. 2013; 248: 254–7. doi: 10.1016/j.expneurol.2013.06.021

11. Venugopalan P, Wang Y, Nguyen T, et al. Transplanted neurons integrate into adult retinas and respond to light. Nat Commun. 2016; 7: 1047. doi: 10.1038/ncomms10472

12. Hooks B, Chen C. Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron. 2007; 56: 312–26. doi: 10.1016/j.neuron.2007.10.003

13. Y cel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003; 22: 465–81. doi: 10.1016/s1350-9462(03)00026-0

14. Prins D, Hanekamp S, Cornelissen FW. Structural brain MRI studies in eye diseases: are they clinically relevant? A review of current findings. Acta Ophthalmol. 2016; 94: 113–21. doi: 10.1111/aos.12825

15. Zueva M.V., Neroeva N.V., Katargina L.A., et al. Modifying treatment of degenerative retinal diseases. Part 1: Adaptive and non-adaptive retinal plasticity. Russian ophthalmological journal. 2023; 16 (2): 160–2 (In Russ.). doi: 10.21516/2072-0076-2023-16-2-160-165

16. LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014; 15: 443–54. doi: 10.1038/nrn3743

17. Endo M, Hattori M, Toriyabe H, et al. Optogenetic activation of axon guidance receptors controls direction. Sci Rep. 2016; 36 (42): 10707–22. doi: 10.1038/srep23976

18. Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to restore normal vision. Proc Nat Acad Sci. USA. 2012; 109: 15012–7. doi: 10.1073/pnas.1207035109

19. Yan B, Vakulenko M, Min SH, Hauswirth WW, Nirenberg S. Maintaining ocular safety with light exposure, focusing on devices for optogenetic stimulation. Vision Res. 2016; 121: 57–71. doi: 10.1016/j.visres.2016.01.006

20. Gidday JM. Adaptive plasticity in the retina: Protection against acute injury and neurodegenerative disease by conditioning stimuli. Conditioning Medicine. 2018; 1: 85–97. PMID: 31423482.

21. Roth S, Li B, Rosenbaum PS, et al. Preconditioning provides complete protection against retinal ischemic injury in rats. Invest Ophthalmol Vis Sci. 1998; 39: 775–85. PMID: 9538885.

22. Roth S. Endogenous neuroprotection in the retina. Brain Res Bull. 2004; 62: 461–6. doi: 10.1016/j.brainresbull.2003.07.006

23. Del Sole MJ, Sande PH, Felipe AE, et al. Characterization of uveitis induced by use of a single intravitreal injection of bacterial lipopolysaccharide in cats. Am J Vet Res. 2008; 69 (11): 1487–95. doi: 10.2460/ajvr.69.11.1487

24. Dreixler JC, Poston JN, Balyasnikova I, et al. Delayed administration of bone marrow mesenchymal stem cell conditioned medium significantly improves outcome after retinal ischemia in rats. Invest Ophthalmol Vis Sci. 2014; 55: 3785–96. doi: 10.1167/iovs.13-11683

25. Gidday JM. Extending injury- and disease-resistant CNS phenotypes by repetitive epigenetics conditioning. Front Neurol. 2015; 6. doi: 10.3389/fneur.2015.00042

26. Zhu Y, Zhang L, Schmidt J, Gidday J. Glaucoma-induced degeneration of retinal ganglion cell soma and axons prevented by hypoxic preconditioning: A model of 'glaucoma tolerance'. Mol. Med. 2012; 18: 697–706. doi: 10.2119%2Fmolmed.2012.00050

27. Gidday J, Zhang L, Chiang CW, Zhu Y. Enhanced retinal ganglion cell survival in glaucoma by hypoxic postconditioning after disease onset. NeuroTherapeutics. 2015; 12: 502–514. doi: 10.1007/s13311-014-0330-x

28. Belforte N, Sande PH, de Zavalia N, et al. Ischemic tolerance protects the rat retina from glaucomatous damage. PLoS One. 2011; 6. doi: 10.1371/journal.pone.0023763

29. Salido EM, Dorfman D, Bordone M, et al. Ischemic conditioning protects the rat retina in an experimental model of early type 2 diabetes. Exp Neurol. 2013; 240: 1–8. doi: 10.1016/j.expneurol.2012.11.006

30. Kim DY, Jung SY, Kim CJ, Sung YH, Kim JD. Treadmill exercise ameliorates apoptotic cell death in the retinas of diabetic rats. Mol Med Rep. 2013; 7: 1745–1750. doi: 10.3892/mmr.2013.1439

31. Hanif AM, Lawson EC, Prunty M, et al. Neuroprotective effects of voluntary exercise in an inherited retinal degeneration mouse model. Invest Ophthalmol Vis Sci. 2015; 56: 6839–6846. doi: 10.1167/iovs.15-16792

32. Dreixler JC, Shaikh AR, Alexander M, Savoie B, Roth S. Post-ischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic pre-conditioning. Exp. Eye Res. 2010; 91: 844–52. doi: 10.1016/j.exer.2010.06.015

33. Heusch G, B tker HE, Przyklenk K, Redington A, Yellon D. Remote ischemic conditioning. J Am Coll Cardiol. 2015; 65 (2): 177–95. doi: 10.1016/j.jacc.2014.10.031

34. Brandli A, Johnston DM, Stone J. Remote ischemic preconditioning protects retinal photoreceptors: Evidence from a rat model of light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2016; 57: 5302–13. doi: 10.1167/iovs.16-19361

35. Bourne RR, Stevens GA, White RA, et al. Vision Loss Expert Group. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013; 1 (6): e339–49. doi: 10.1016/S2214-109X(13)70113-X

36. Menon A, Vijayavenkataraman S. Novel vision restoration techniques: 3D bioprinting, gene and stem cell therapy, optogenetics, and the bionic eye. Artif Organs. 2022; 46 (8): 1463–74. doi: 10.1111/aor.14241

37. Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med. 2020; 26 (3): 354–9. doi: 10.1038/s41591-020-0763-1

38. Zhang X, Tenerelli K, Wu S, et al. Cell transplantation of retinal ganglion cells derived from hESCs. Restor Neurol Neurosci. 2020; 38: 131–40. doi: 10.3233/RNN-190941

39. Suen HC, Qian Y, Liao J, et al. Transplantation of retinal ganglion cells derived from male germline stem cell as a potential treatment to glaucoma. Stem Cells Dev. 2019; 28 (20): 1365–75. doi: 10.1089/scd.2019.0060

40. Wu S, Chang KC, Nahmou M, Goldberg JL. Induced pluripotent stem cells promote retinal ganglion cell survival after transplant. Invest Ophthalmol Vis Sci. 2018; 59 (3): 1571–76. doi:10.1167/iovs.17-23648

41. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017; 390 (10097): 849–60. doi: 10.1016/S0140-6736(17)31868-8

42. Kantor A, McClements ME, Peddle CF, et al. CRISPR genome engineering for retinal diseases. Prog Mol Biol Transl Sci. 2021; 182: 29–79. doi: 10.1016/bs.pmbts.2021.01.024

43. Gaub BM, Berry MH, Holt AE, Isacoff EY, Flannery JG. Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther. 2015; 23 (10): 1562–71. doi: 10.1038/mt.2015.121

44. Ostrovskiy M.A. Optogenetics and vision. Vestnik Rossijskoj akademii nauk. 2019; 89 (2): 125–30 (In Russ.).

45. Gauvain G, Akolkar H, Chaffiol A, et al. Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates. Commun Biol. 2021; 4: 125. doi: 10.1038/s42003-020-01594-w

46. Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021; 27: 1223–9. doi: 10.1038/s41591-021-01351-4

47. Lorber B, Hsiao WK, Martin KR. Three-dimensional printing of the retina. Curr Opin Ophthalmol. 2016; 27 (3): 262–7. doi: 10.1097/ICU.0000000000000252

48. Larochelle RD, Mann SE, Ifantides C. 3D printing in eye care. Ophthalmol Ther. 2021; 10: 733–52. doi: 10.1007/s40123-021-00379-6

49. Wang V, Kuriyan AE. Optoelectronic devices for vision restoration. Curr Ophthalmol Rep. 2020; 8: 69-77. doi: 10.1007/s40135-020-00232-2

50. Niketeghad S, Pouratian N. Brain machine interfaces for vision restoration: The current state of cortical visual prosthetics. Neurotherapeutics. 2019; 16: 134–43. doi: 10.1007/s13311-018-0660-1

51. Trauzettel-Klosinski S. Rehabilitative techniques. Handb Clin Neurol. 2011b; 102: 263–78. doi: 10.1016/B978-0-444-52903-9.00016-9

52. Sahraie A, Trevethan CT, MacLeod MJ, et al. Increased sensitivity after repeated stimulation of residual spatial channels in blind-sight. Proc Natl Acad Sci USA. 2006; 103 (40): 14971–6. doi: 10.1073/pnas.0607073103

53. Dehn LB, Piefke M, Toepper M, et al. Cognitive training in an everyday-like virtual reality enhances visual-spatial memory capacities in stroke survivors with visual field defects. Top Stroke Rehabil. 2020; 27 (6): 442–52. doi: 10.1080/10749357.2020.1716531

54. Zihl J, von Cramon D. Restitution of visual function in patients with cerebral blindness. J Neurol Neurosurg Psychiatry. 1979; 42 (4): 312–22. doi: 10.1136/jnnp.42.4.312

55. Kasten E, Sabel BA. Visual field enlargement after computer training in braindamaged patients with homonymous deficits: an open pilot trial. Restor Neurol Neurosci. 1995; 8 (3): 113–27. doi: 10.3233/RNN-1995-8302

56. Sabel BA, Henrich-Noack P, Fedorov A, Gall C. Vision restoration after brain and retina damage: the “residual vision activation theory”. Prog Brain Res. 2011; 192: 199–262. doi: 10.1016/B978-0-444-53355-5.00013-0

57. Kasten E, Poggel DA, Sabel BA. Computer-based training of stimulus detection improves color and simple pattern recognition in the defective field of hemianopic subjects. J Cogn Neurosci. 2000; 12 (6): 1001–12. doi: 10.1162/08989290051137530

58. Sabel BA, Gudlin J. Vision restoration training for glaucoma: a randomized clinical trial. Jama Ophthalmology. 2014; 132: 381–9. doi: 10.1001/jamaophthalmol.2013.7963

59. Tarita-Nistor L, Gonz lez EG, Markowitz SN, Steinbach MJ. Plasticity of fixation in patients with central vision loss. Vis Neurosci. 2009; 26: 487–94. doi: 10.1017/S0952523809990265

60. Plank T, Rosengarth K, Schmalhofer C, et al. Perceptual learning in patients with macular degeneration. Front Psychol. 2014; 5: 1189.

61. Maniglia M, Soler V, Cottereau B, Trotter Y. Spontaneous and training-induced cortical plasticity in MD patients: Hints from lateral masking. Sci Report. 2018; 8: 90. doi: 10.1038/s41598-017-18261-6

62. Vingolo EM, Cavarretta S, Domanico D, Parisi F, Malagola R. Microperimetric biofeedback in AMD patients. Appl Psychophysiol Biofeedback. 2007; 32 (3–4), 185–89. doi: 10.1007/s10484-007-9038-6

63. Vingolo EM, Salvatore S, Limoli PG. MP-1 biofeedback: luminous pattern stimulus versus acoustic biofeedback in age related macular degeneration (AMD). Appl Psychophysiol Biofeedback. 2013; 38 (1): 11–6. doi: 10.1007/s10484-012-9203-4

64. Morales MU, Saker S, Amoaku WM. Bilateral eccentric vision training on pseudo vitelliform dystrophy with microperimetry biofeedback. BMJ Case Rep. 2015; 2015: bcr2014207969. doi: 10.1136/bcr-2014-207969

65. Sborgia G, Niro A, Tritto T, et al. Microperimetric biofeedback training after successful inverted flap technique for large macular hole. J Clin Med. 2020; 9: 556. doi: 10.3390/jcm9020556

66. Qian T, Xu X, Liu X, et al. Efficacy of MP-3 microperimeter biofeedback fixation training for low vision rehabilitation in patients with maculopathy. BMC Ophthalmol. 2022; 22: 197. doi: 10.1186/s12886-022-02419-6

67. Verdina T, Piaggi S, Ferraro V, et al. Efficacy of biofeedback rehabilitation based on visual evoked potentials analysis in patients with advanced age-related macular degeneration. Sci Rep. 2020; 10 (1): 20886. doi: 10.1038/s41598-020-78076-w


Review

For citations:


Neroeva N.V., Zueva M.V., Katargina L.A., Kotelin V.I., Zhuravleva A.N., Tsapenko I.V., Fadeev D.V. Modifying treatment of degenerative retinal diseases. Part 2. Conditioning therapy techniques and the problem of maximizing retinal plasticity. Russian Ophthalmological Journal. 2023;16(3):165-172. (In Russ.) https://doi.org/10.21516/2072-0076-2023-16-3-165-172

Views: 325


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)