Preview

Russian Ophthalmological Journal

Advanced search

Telemedicine for glaucoma: the state-of-the-art and trends of development

https://doi.org/10.21516/2072-0076-2023-16-3-173-179

Abstract

Glaucoma is the top leading cause of ophthalmic-related disability in almost all Russian regions. It is a chronic lifelong disease which requires regular monitoring (once a year or more often) in a medical facility. Since the population is aging, the prevalence of glaucoma is steadily increasing, which hampers access to medical care. Advances in telecommunications and diagnostic technologies have given rise to programs of TV glaucoma, which are used to pass the basic glaucoma parameters on to a specialist working remotely for interpretation. The Federal Law No 242-FZ on telemedicine came into force on January 1, 2018, but the COVID-19 pandemic sped up the development of information technologies in medicine in general and telemedicine communication in particular. The review presents the data on TV glaucoma programs which point to their effectiveness and provides practical advice. Potentially, telemedicine can facilitate access to medical care. The analysis of the economic factors shows that remote consulting is more cost-effective than traditional face-to-face examination of the patient. TV glaucoma programs often help detect glaucomatous changes in the ONH, so more patients with suspicion of glaucoma are referred for screening.. Publications focused on the experience in using active programs contribute to their further development and introduction to the public health system, which will eventually facilitate the access to quality medical care for patients with glaucoma.

About the Authors

S. Yu. Petrov
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Sergey Yu. Petrov - Dr. of Med. Sci., head, department of glaucoma

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



T. N. Malishevskaya
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Tatiana N. Malishevskaya - Dr. of Med. Sci., head, department of analytics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



E. E. Farikova
I.P.Pavlov First St. Petersburg State Medical University
Russian Federation

Elmaz E. Farikova - ophthalmologist

6-8, Leo Tolstoy St., St. Petersburg, 197022



O. I. Markelova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Oksana I. Markelova - post-graduate student

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121 (11): 2081-90. doi: 10.1016/j.ophtha.2014.05.013

2. The incidence of the entire population of Russia in 2020 with a diagnosis established for the first time in life. Ministry of health of the Russian Federation, Central research institute of health organization and informatization. Moscow; 2021 (In Russ.).

3. Statistics data of Federal bureau of medical and social expertise of the Ministry of Labor of Russia; 2020–2021 (In Russ.).

4. Canadian Ophthalmological Society Glaucoma Clinical Practice Guideline Expert Committee; Canadian Ophthalmological Society. Canadian Ophthalmological Society evidence-based clinical practice guidelines for the management of glaucoma in the adult eye. Can J Ophthalmol. 2009; 44 Suppl 1: S7–93. doi: 10.3129/cjo44s1

5. Prum BE, Jr, Rosenberg LF, Gedde SJ, et al. Primary Open-Angle Glaucoma Preferred Practice Pattern (R) Guidelines. Ophthalmology. 2016; 123 (1): 41–111. doi: 10.1016/j.ophtha.2015.10.053

6. Heffler M. The future of telehealth. Evolving COVID perspectives offer clues. Pharmaceutical executive. 2021; 41 (4): 34–36.

7. Howland C, Despins L, Sindt J, Wakefield B, Mehr DR. Primary care clinic nurse activities with a telehealth monitoring system. West J Nurs Res. 2020; 43 (1): 5–12. doi: 10.1177/0193945920923082

8. Resnikoff S, Felch W, Gauthier TM, Spivey B. The number of ophthalmologists in practice and training worldwide: a growing gap despite more than 200,000 practitioners. Br J Ophthalmol. 2012; 96 (6): 783–7. doi: 10.1136/bjophthalmol-2011-301378

9. Kassam F, Yogesan K, Sogbesan E, Pasquale LR, Damji KF. Teleglaucoma: improving access and efficiency for glaucoma care. Middle East Afr J Ophthalmol. 2013; 20 (2): 142–9. doi: 10.4103/0974-9233.110619

10. Blazquez F, Sebastian MA, Anton A. Detection of glaucoma using SisGlaTel: acceptability and satisfaction among participants, and problems detected. Arch Soc Esp Oftalmol. 2008; 83 (9): 533–8. doi: 10.4321/s0365-66912008000900005

11. Clarke J, Puertas R, Kotecha A, Foster PJ, Barton K. Virtual clinics in glaucoma care: face-to-face versus remote decision-making. Br J Ophthalmol. 2017; 101 (7): 892–5. doi: 10.1136/bjophthalmol-2016-308993

12. de Bont A, Bal R. Telemedicine in interdisciplinary work practices: on an IT system that met the criteria for success set out by its sponsors, yet failed to become part of every-day clinical routines. BMC Med Inform Decis Mak. 2008; 8: 47. doi: 10.1186/1472-6947-8-47

13. Hautala N, Hyytinen P, Saarela V, et al. A mobile eye unit for screening of diabetic retinopathy and follow-up of glaucoma in remote locations in northern Finland. Acta Ophthalmol. 2009; 87 (8): 912–3. doi: 10.1111/j.1755-3768.2009.01570.x

14. Kassam F, Amin S, Sogbesan E, Damji KF. The use of teleglaucoma at the University of Alberta. J Telemed Telecare. 2012; 18 (7): 367–73. doi: 10.1258/jtt.2012.120313

15. Keenan J, Shahid H, Bourne RR, White AJ, Martin KR. Cambridge community Optometry Glaucoma Scheme. Clin Exp Ophthalmol. 2015; 43 (3): 221–7. doi: 10.1111/ceo.12398

16. Kennedy C, Kirwan J, Cook C, et al. Telemedicine techniques can be used to facilitate the conduct of multicentre trials. J Telemed Telecare. 2000; 6 (6): 343–7; discussion 347-9. doi: 10.1258/1357633001936030

17. Kiage D, Kherani IN, Gichuhi S, Damji KF, Nyenze M. The Muranga Teleophthalmology Study: comparison of virtual (teleglaucoma) with in-person clinical assessment to diagnose glaucoma. Middle East Afr J Ophthalmol. 2013; 20 (2): 150–7. doi: 10.4103/0974-9233.110604

18. Li HK, Tang RA, Oschner K, et al. Telemedicine screening of glaucoma. Telemed J. 1999; 5 (3): 283–290. doi: 10.1089/107830299312032

19. Owsley C, Rhodes LA, McGwin G, Jr, et al. Eye Care Quality and Accessibility Improvement in the Community (EQUALITY) for adults at risk for glaucoma: study rationale and design. Int J Equity Health. 2015; 14: 135. doi: 10.1186/s12939-015-0213-8

20. Staffieri SE, Ruddle JB, Kearns LS, et al. Telemedicine model to prevent blindness from familial glaucoma. Clin Exp Ophthalmol. 2011; 39 (8): 760–5. doi: 10.1111/j.1442-9071.2011.02556.x

21. Tuulonen A, Ohinmaa T, Alanko HI, et al. The application of teleophthalmology in examining patients with glaucoma: a pilot study. J Glaucoma. 1999; 8 (6): 367–73. https://pubmed.ncbi.nlm.nih.gov/10604295/

22. Verma S, Arora S, Kassam F, Edwards MC, Damji KF. Northern Alberta remote teleglaucoma program: clinical outcomes and patient disposition. Can J Ophthalmol. 2014; 49 (2): 135–40. doi: 10.1016/j.jcjo.2013.11.005

23. Wright HR, Diamond JP. Service innovation in glaucoma management: using a Web-based electronic patient record to facilitate virtual specialist supervision of a shared care glaucoma programme. Br J Ophthalmol. 2015; 99 (3): 313–7. doi: 10.1136/bjophthalmol-2014-305588

24. Kotecha A, Baldwin A, Brookes J, Foster PJ. Experiences with developing and implementing a virtual clinic for glaucoma care in an NHS setting. Clin Ophthalmol. 2015; 9: 1915–23. doi: 10.2147/OPTH.S92409

25. Court JH, Austin MW. Virtual glaucoma clinics: patient acceptance and quality of patient education compared to standard clinics. Clin Ophthalmol. 2015; 9: 745–9. doi: 10.2147/OPTH.S75000

26. Cavallerano AA, Cavallerano JD, Katalinic P, et al. A telemedicine program for diabetic retinopathy in a Veterans Affairs Medical Center — the Joslin Vision Network Eye Health Care Model. Am J Ophthalmol. 2005; 139 (4): 597–604. doi: 10.1016/j.ajo.2004.10.064

27. Park DW, Mansberger SL. Eye disease in patients with diabetes screened with telemedicine. Telemed J E Health. 2017; 23 (2): 113–8. doi: 10.1089/tmj.2016.0034

28. Elson MJ, Giangiacomo A, Maa AY, et al. Early Experience with full-scope shared-care teleglaucoma in Canada. J Glaucoma. 2022; 31 (2): 79–83. doi: 10.1097/IJG.0000000000001905

29. Thomas SM, Jeyaraman MM, Hodge WG, et al. The effectiveness of teleglaucoma versus in-patient examination for glaucoma screening: a systematic review and meta-analysis. PLoS One. 2014; 9 (12): e113779. doi: 10.1371/journal.pone.0113779

30. Moyer V. Force U.S.P.S.T. Screening for glaucoma: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med. 2013; 159 (7): 484–9. doi: 10.7326/0003-4819-159-6-201309170-00686

31. Bokman CL, Pasquale LR, Parrish RK, 2nd, Lee RK. Glaucoma screening in the Haitian Afro-Caribbean population of South Florida. PLoS One. 2014; 9 (12): e115942. doi: 10.1371/journal.pone.0115942

32. Waisbourd M, Pruzan NL, Johnson D, et al. The Philadelphia glaucoma detection and treatment project: Detection rates and initial management. Ophthalmology. 2016; 123 (8): 1667–74. doi: 10.1016/j.ophtha.2016.04.031

33. Kassam F, Sogbesan E, Boucher S, et al. Collaborative care and teleglaucoma: a novel approach to delivering glaucoma services in Northern Alberta, Canada. Clin Exp Optom. 2013; 96 (6): 577–580. doi: 10.1111/cxo.12065

34. Kashiwagi K, Tanabe N, Go K, et al. Comparison of a remote operating slitlamp microscope system with a conventional slit-lamp microscope system for examination of trabeculectomy eyes. J Glaucoma. 2013; 22 (4): 278–83. doi: 10.1097/IJG.0b013e318239c343

35. Astakhov Y.S., Turgel V.A. Telemedicine in ophthalmology. Part 1. Common teleophthalmology. Ophthalmology Journal. 2020; 13 (1): 43–52 (In Russ.). doi: 10.17816/OV19112

36. Astakhov Y.S., Turgel V.A. Telemedicine in ophthalmology. Part 2. Particular teleophthalmology. Ophthalmology Journal. 2020; 13 (3): 67-–80 (In Russ.). doi: 10.17816/OV46314

37. Icare Finland. Application “Icare PATIENT”. Available at: https://patients.icare-world.com/

38. Glaucare GmbH. Application “Glaucare”. Available at: https://glau.care/en/

39. Responsum Health. Application “The Glaucoma Community”. Available at: https://responsumhealth.com/glaucoma/2022

40. IPADE — Instituto para o Desenv. da Educa o LTDA. Application “GlaucoCheck”. Available at: https://play.google.com/store/apps/details?id=com.lit.glaucocheck

41. Lanue Startup. Application “Glaucoma SPIA”. Available at: https://apkpure.com/br/glaucoma-spia-triagem/appinventor.ai_diego_santiagomarinho. GlaucomaSpIA_Triagem

42. Johannes Vegt. Application “Glaucoma”. Available at: https://play.google.com/store/apps/details?id=de.signsberlin.glaucoma&hl=en_US

43. АО «КазНИИ глазных болезней». Application «Глаукома». Available at: https://play.google.com/store/apps/details?id=com.gluacomaalmaty.glaucoma&hl=ru&gl=US

44. Hmtl bureau. Application «Тонометрия по Маклакову». Available at: https:// play.google.com/store/apps/details?id=com.ngse.tonometry

45. Казанов Юрий. Available at: Application «GlauHint». Available at: https:// play.google.com/store/apps/details?id=com.Kazanov.GlauHint

46. Kazanov Yu.A. Digital technologies for the treatment of glaucoma. National Journal glaucoma. 2020; 19 (4): 12–19 (In Russ.). doi: 10.25700/NJG.2020.04.02

47. Liu S, Lam S, Weinreb RN, et al. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. Invest Ophthalmol Vis Sci. 2011; 52 (10): 7325–31. doi: 10.1167/iovs.11-7795

48. Monsalve B, Ferreras A, Calvo P, et al. Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy. Eye (Lond). 2017; 31 (3): 443–51. doi: 10.1038/eye.2016.251

49. Lowry EA, Hou J, Hennein L, et al. Comparison of Peristat online perimetry with the Humphrey perimetry in a clinic-based setting. Transl Vis Sci Technol. 2016; 5 (4): 4. doi: 10.1167/tvst.5.4.4

50. Vingrys AJ, Healey JK, Liew S, et al. Validation of a tablet as a tangent perimeter. Transl Vis Sci Technol. 2016; 5 (4): 3. doi: 10.1167/tvst.5.4.3

51. Tojo N, Abe S, Ishida M, Yagou T, Hayashi A. The fluctuation of intraocular pressure measured by a contact lens sensor in normal tension glaucoma patients and nonglaucoma subjects. J Glaucoma. 2017; 26 (3): 195–200. doi: 10.1097/IJG.0000000000000517

52. Tojo N, Hayashi A, Otsuka M, Miyakoshi A. Fluctuations of the intraocular pressure in pseudoexfoliation syndrome and normal eyes measured by a contact lens sensor. J Glaucoma. 2016; 25 (5): e463–468. doi: 10.1097/IJG.0000000000000292

53. Brandt JD, Beiser JA, Gordon MO, Kass MA. Ocular Hypertension Treatment Study G. Central corneal thickness and measured IOP response to topical ocular hypotensive medication in the Ocular Hypertension Treatment Study. Am J Ophthalmol. 2004; 138 (5): 717–22. doi: 10.1016/j.ajo.2004.07.036

54. Tan S, Yu M, Baig N, Hansapinyo L, Tham CC. Agreement of patient-measured intraocular pressure using rebound tonometry with Goldmann applanation tonometry (GAT) in glaucoma patients. Sci Rep. 2017; 7: 42067. doi: 10.1038/srep42067

55. Han JW, Cho SY, Kang KD. Correlation between optic nerve parameters obtained using 3D nonmydriatic retinal camera and optical coherence tomography: Interobserver agreement on the disc damage likelihood scale. J Ophthalmol. 2014; 2014: 931738. doi: 10.1155/2014/931738

56. Spaeth GL, Henderer J, Liu C, et al. The disc damage likelihood scale: reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma. Trans Am Ophthalmol Soc. 2002; 100: 181–5; discussion 185-186. PMID: 12545692

57. Schrems WA, Schrems-Hoesl LM, Mardin CY, et al. Can glaucomatous visual field progression be predicted by structural and functional measures? J Glaucoma. 2017; 26 (4): 373–82. doi: 10.1097/IJG.0000000000000628

58. Li G, Fansi AK, Boivin JF, Joseph L, Harasymowycz P. Screening for glaucoma in high-risk populations using optical coherence tomography. Ophthalmology. 2010; 117 (3): 453–61. doi: 10.1016/j.ophtha.2009.07.033

59. Springelkamp H, Lee K, Wolfs RC, et al. Population-based evaluation of retinal nerve fiber layer, retinal ganglion cell layer, and inner plexiform layer as a diagnostic tool for glaucoma. Invest Ophthalmol Vis Sci. 2014; 55 (12): 8428–38. doi: 10.1167/iovs.14-15506

60. Chong GT, Lee RK. Glaucoma versus red disease: imaging and glaucoma diagnosis. Curr Opin Ophthalmol. 2012; 23 (2): 79–88. doi: 10.1097/ICU.0b013e32834ff431

61. Haleem MS, Han L, Hemert J, et al. Regional image features model for automatic classification between normal and glaucoma in fundus and Scanning Laser Ophthalmoscopy (SLO) images. J Med Syst. 2016; 40 (6): 132. doi: 10.1007/s10916-016-0482-9

62. Thomas S, Hodge W, Malvankar-Mehta M. The cost-effectiveness analysis of teleglaucoma screening device. PLoS One. 2015; 10 (9): e0137913. doi: 10.1371/journal.pone.0137913

63. O'Day R, Smith C, Muir J, Turner A. Optometric use of a teleophthalmology service in rural Western Australia: comparison of two prospective audits. Clin Exp Optom. 2016; 99 (2): 163–7. doi: 10.1111/cxo.12334

64. Gan K, Liu Y, Stagg B, et al. Telemedicine for glaucoma: Guidelines and recommendations. Telemed J E Health. 2020; 26 (4): 551–5. doi: 10.1089/tmj.2020.0009


Review

For citations:


Petrov S.Yu., Malishevskaya T.N., Farikova E.E., Markelova O.I. Telemedicine for glaucoma: the state-of-the-art and trends of development. Russian Ophthalmological Journal. 2023;16(3):173-179. (In Russ.) https://doi.org/10.21516/2072-0076-2023-16-3-173-179

Views: 380


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)