Preview

Russian Ophthalmological Journal

Advanced search

Response of multipolar retinal neurons to photodamage in the experiment

https://doi.org/10.21516/2072-0076-2024-17-2-62-67

Abstract

Purpose: to assess the reaction of multipolar retinal neurons to light irradiation depending on the intensity and duration of exposure. Material and methods. Outbred sexually mature white rats (n = 50, 100 eyes) weighing 180–200 g were exposed to continuous round-the-clock light (200, 3,500 lux; 1, 2, 7, 14, 30 days). The control group consisted of 25 non-irradiated animals (50 eyes). Using semifine sections, colored with toluidine blue, we counted the number of neurons in the ganglionic layer with karyopyknosis, focal and total chromatolysis. In the optic nerve, the percentage of degeneratively altered axons and the number of nerve fibers with deformation of the myelin sheath were calculated. Ultrastructural changes in neurons were studied using a JEM-100 CX-II electron microscope. Results. In the first days of the experiment (1, 2 days), reactive and destructive changes in organelles are observed in the perikaryons of multipolar retinal neurons. The granular endoplasmic reticulum becomes fragmented, loses part of its ribosomes, and vacuoles of varied sizes are formed from its cisterns. With an increase in the duration of exposure (7–30 days), degradation processes are increasing, all the more so after high-intensity (3,500 lux) light irradiation. The photodamage causes changes in all components of the optic nerve and is characterized by a destruction of organelles, a decrease in the number of elements of the cytoskeleton in the axon, and myelin sheath splitting. Conclusion. Changes in multipolar neurons of the retina after photodamage are primarily related to the content and distribution of the chromatophilic substance and depend on the intensity and duration of illumination.

About the Authors

A. V. Potapov
Siberian State Medical University
Russian Federation

Alexey V. Potapov — Dr. of Med. Sci., professor, chair of histology, embryology and cytology 

2, Moskovsky Trakt St., Tomsk, 634050



E. Y. Varakuta
Siberian State Medical University
Russian Federation

Elena Y. Varakuta — Dr. of Med. Sci., head of chair of normal human anatomy with a course of topographic anatomy and operative surgery 

2, Moskovsky Trakt St., Tomsk, 634050



A. V. Solonsky
Siberian State Medical University; Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Anatoly V. Solonsky — Dr. of Med. Sci., professor, chair of histology, embryology and cytology; leading researcher, laboratory of clinical psychoneuroimmunology and neurobiology 

2, Moskovsky Trakt St., Tomsk, 634050;
4, Aleutskaya St., Tomsk, 634014



A. V. Gerasimov
Siberian State Medical University
Russian Federation

Aleksandr V. Gerasimov — Dr. of Med. Sci., professor, chair of histology, embryology and cytology 

2, Moskovsky Trakt St., Tomsk, 634050



A. A. Zhdankina
Siberian State Medical University
Russian Federation

Anna A. Zhdankina — Dr. of Med. Sci., professor, chair of histology, embryology and cytology 

2, Moskovsky Trakt St., Tomsk, 634050



S. V. Logvinov
Siberian State Medical University
Russian Federation

Sergey V. Logvinov — Dr. of Med. Sci., professor, head of chair of histology, embryology and cytology 

2, Moskovsky Trakt St., Tomsk, 634050



References

1. Azizi M, Golmohammadi R, Aliabadi M. Comparative analysis of lighting characteristics and ultraviolet emissions from commercial compact fluorescent and incandescent lamps. J Res Health Sci. 2016; 16 (4): 200–5. PMCID: PMC7189929

2. Fenton L, Moseley H. UV emissions from low energy artificial light sources. Photodermatol Photoimmunol Photomed. 2014; 30 (2–3): 153–9. doi: 10.1111/phpp.12094

3. Korgavkar K, Xiong M, Weinstock MA. Compact fluorescent lamps and risk of skin cancer. J Cutan Med Surg. 2013; 17 (5): 308–12. doi: 10.2310/7750.2013.12115

4. Behar-Cohen F, Martinsons C, Vi not F, et al. Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res. 2011; 30 (4): 239–57. doi: 10.1016/j.preteyeres.2011.04.002

5. Moseley H. Ferguson J. The risk to normal and photosensitive individuals from exposure to light from compact fluorescent lamps. Photodermatol Photoimmunol Photomed. 2011; 27 (3): 131–7. doi: 10.1111/j.1600-0781.2011.00576.x

6. Necz PP, Bakos J. Photobiological safety of the recently introduced energy efficient household lamps. J Occup Med Environ Health. 2014; 27 (6): 1036–42. doi: 10.2478/s13382-014-0332-2

7. Xie C, Zhu H, Chen S, et al. Chronic retinal injury induced by white LED light with different correlated color temperatures as determined by microarray analyses of genome-wide expression patterns in mice. J Photochem Photobiol B. 2020; 210: 111977. doi: 10.1016/j.jphotobiol.2020.111977

8. Gabel V, Maire M, Reichert CF, et al. Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels. Chronobiol Int. 2013; 30 (8): 988–97. doi: 10.3109/07420528.2013.793196

9. He ling M, K lbl PS, Singh P. Hazards posed by LEDs? A comparative study. Ophthalmologe. 2019; 116 (7): 625–30. doi: 10.1007/s00347-018-0778-x

10. O'Hagan JB, Khazova M, Price LL. Low-energy light bulbs, computers, tablets and the blue light hazard. Eye (Lond). 2016; 30 (2): 230–3. doi: 10.1038/eye.2015.261

11. Bauer M, Glenn T, Monteith S, et al. The potential influence of LED lighting on mental illness. World J Biol Psychiatry. 2018; 19 (1): 59–73. doi: 10.1080/15622975.2017.1417639

12. Torriglia A, Mascarelli F, Behar-Cohen F. New lighting technology and our eyes. Med Sci (Paris). 2020; 36 (8–9): 769–73. doi: 10.1051/medsci/2020133

13. Touitou Y, Point S. Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. Environ Res. 2020; 190: 109942. doi: 10.1016/j.envres.2020.109942

14. Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect. 2014; 122 (3): 269–76. doi: 10.1289/ehp.1307294

15. Cho Y, Ryu SH, Lee BR, et al. Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment. Chronobiol Int. 2015; 32 (9): 1294–310. doi: 10.3109/07420528.2015.1073158

16. Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, et al. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci. 2014; 15 (12): 23448–500. doi: 10.3390/ijms151223448

17. Smolensky MH, Sackett-Lundeen LL, Portaluppi F. Nocturnal light pollution and underexposure to daytime sunlight: Complementary mechanisms of circadian disruption and related diseases. Chronobiol Int. 2015; 32 (8): 1029–48. doi: 10.3109/07420528.2015.1072002

18. Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017; 173: 94–106. doi: 10.1016/j.lfs.2017.02.008

19. Jaadane I, Villalpando Rodriguez GE, Boulenguez P, et al. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo. J Cell Mol Med. 2017; 21 (12): 3453–66. doi: 10.1111/jcmm.13255

20. Krigel A, Berdugo M, Picard E, et al. Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity. Neuroscience. 2016; 339: 296–307. doi: 10.1016/j.neuroscience.2016.10.015

21. Jaadane I, Boulenguez P, Chahory S, et al. Retinal damage induced by commercial light emitting diodes (LEDs). Free Radic Biol Med. 2015; 84: 373–84. doi: 10.1016/j.freeradbiomed.2015.03.034

22. Koizumi A. Morphological and functional diversity of retinal ganglion cells in the common marmoset. Brain Nerve. 2015; 67 (2): 193–8. doi: 10.11477/mf.1416200111

23. Wang HZ, Lu QJ, Wang NL, et al. Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J (Engl). 2008; 121 (11): 1015–9. PMID: 18706250

24. Roecklein KA, Wong PM, Miller MA, et al. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder. Neurosci Biobehav Rev. 2013; 37 (3): 229–39. doi: 10.1016/j.neubiorev.2012.12.009

25. Ramsey DJ, Ramsey KM, Vavvas DG. Genetic advances in ophthalmology: the role of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells in the circadian organization of the visual system. Semin Ophthalmol. 2013 Sep-Nov; 28 (5–6): 406–21. doi: 10.3109/08820538.2013.825294

26. Asakawa K, Ishikawa H. Why do melanopsin-containing retinal ganglion cells have the greatest sensitivity to blue light? Acta Ophthalmol. 2015; 93 (4): e308–9. doi: 10.1111/aos.12574

27. Feigl B, Zele AJ. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease. Optom Vis Sci. 2014 Aug; 91 (8): 894–903. doi: 10.1097/OPX.0000000000000284

28. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002; 295 (5557): 1065–70. doi: 10.1126/science.1069609

29. Lax P, Ortu o-Lizar n I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive melanopsin-containing retinal ganglion cells in health and disease: Implications for circadian rhythms. Int J Mol Sci. 2019; 20 (13): 3164. doi: 10.3390/ijms20133164

30. Morshedian A, Huynh TH, Frederiksen R, Fain GL, Sampath AP. Pupillary light reflex of lamprey Petromyzon marinus. Curr Biol. 2021; 31 (2): R65–R66. doi: 10.1016/j.cub.2020.11.021

31. Sanes JR, Masland RH. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci. 2015; 38: 221–46. doi: 10.1146/annurev-neuro-071714-034120


Review

For citations:


Potapov A.V., Varakuta E.Y., Solonsky A.V., Gerasimov A.V., Zhdankina A.A., Logvinov S.V. Response of multipolar retinal neurons to photodamage in the experiment. Russian Ophthalmological Journal. 2024;17(2):62-67. (In Russ.) https://doi.org/10.21516/2072-0076-2024-17-2-62-67

Views: 427


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)