Виртуальная реальность в зрительной реабилитации
https://doi.org/10.21516/2072-0076-2024-17-3-113-118
Аннотация
В обзоре обсуждается текущее состояние и перспективы применения технологий виртуальной реальности (VR) в стратегиях зрительной реабилитации, основанных на активации нейропластичности. Тренировки зрения в VR имеют ряд преимуществ перед традиционными реабилитационными мероприятиями. VR-занятия в игровом формате увлекают и мотивируют пользователя к активному участию в терапии и соблюдению им плана лечения, проводятся в безопасной и контролируемой среде. В VR-системах имеется возможность создавать индивидуальные программы лечения, адаптированные к конкретным потребностям и способностям каждого пациента. Системы VR только начинают применяться для реабилитации слабовидящих и показывают в целом многообещающие результаты. Однако требуется более тщательная оценка результатов и дополнительные исследования для преодоления таких ограничений, как небольшой размер выборки и отсутствие контрольных групп. Необходимо привлечение объективных способов диагностики для создания доказательной базы на высоком методическом уровне. Представляется перспективным расширение возможностей VR-технологий для зрительной реабилитации пациентов с ретинальной патологией разной этиологии за счет совмещения зрительных тренировок в виртуальном мире с ритмической фотостимуляцией с оптимальными параметрами оптических сигналов.
Об авторах
М. В. ЗуеваРоссия
Зуева Марина Владимировна — д-р биол. наук, профессор, начальник отдела клинической физиологии зрения им. С.В. Кравкова.
ул. Садовая-Черногрязская, д. 14/19 Москва, 105062
В. И. Котелин
Россия
Котелин Владислав Игоревич — канд. мед. наук, старший научный сотрудник отдела клинической физиологии зрения им. С.В. Кравкова.
ул. Садовая-Черногрязская, д. 14/19 Москва, 105062
Н. В. Нероева
Россия
Нероева Наталия Владимировна — канд. мед. наук, руководитель отдела патологии сетчатки и зрительного нерва.
ул. Садовая-Черногрязская, д. 14/19 Москва, 105062
А. Н. Журавлева
Россия
Журавлева Анастасия Николаевна — канд. мед. наук, научный сотрудник отдела глаукомы.
ул. Садовая-Черногрязская, д. 14/19 Москва, 105062
И. В. Цапенко
Россия
Цапенко Ирина Владимировна — канд. биол. наук, главный специалист отдела клинической физиологии зрения им. С.В. Кравкова.
ул. Садовая-Черногрязская, д. 14/19 Москва, 105062
Список литературы
1. Jin K, Simpkins JW, Ji X, Leis M, Stambler I. The critical need to promote research of aging and aging-related diseases to improve health and longevity of the elderly population. Aging Dis. 2015; 6 (1): 1–5. doi: 10.14336/AD.2014.1210
2. Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging to chronic disease. Cell. 2014; 159 (4): 709–13. doi: 10.1016/j.cell.2014.10.039
3. Evans K, Law SK, Walt J, Buchholz P, Hansen J. The quality-of-life impact of peripheral versus central vision loss with a focus on glaucoma versus age-related macular degeneration. Clin Ophthalmol. 2009; 3: 433–45. doi: 10.2147/opth.s6024
4. Eysel UT. Adult cortical plasticity. Bochum, Germany: Ruhr-University Bochum. 2009:141-47.
5. Gilbert CD, Li W. Adult visual cortical plasticity. Neuron. 2012; 75 (2): 250–64. doi: 10.1016/j.neuron.2012.06.030
6. Sur M, Nagakura I, Chen SH. Mechanisms of plasticity in the developing and adult visual cortex. Chapter 9. Prog Brain Res. 2013; 207: 243–54.
7. Pascual-Leone A, Freitas C, Oberman L. et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr. 2011; 24: 302–15. https://doi.org/10.1007/s10548-011-0196-8
8. Hebb DO. The effects of early experience on problem solving at maturity. Am Psychol. 1947; 2: 737–45.
9. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970; 206: 419–36. https://doi.org/10.1113/jphysiol.1970.sp009022
10. Hensch T. Critical period plasticity in local cortical circuitries. Nat Rev Neurosci. 2005; 6: 877–88. https://doi.org/10.1038/nrn1787
11. Merabet LB, Pascual-Leone A. Neural reorganization following sensory loss: The opportunity of change. Nat Rev Neurosci. 2010; 11 (1): 44–52. https://doi.org/10.1038/nrn2758
12. Bengoetxea H, Ortuzar N, Bulnes S, et al. Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast. 2012; 2012:305693:10. doi: 10.1155/2012/305693
13. Espinosa JS, Stryker MP. Development and plasticity of the primary visual cortex. Neuron. 2012; 75: 230–49. doi: 10.1016/j.neuron.2012.06.009
14. Dragoi V, Sharma J, Sur M. Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron. 2000; 28 (1): 287–98. doi: 10.1016/s0896-6273(00)00103-3
15. Strettoi E, Di Marco B, Orsini N, Napoli D. Retinal plasticity. Int J Mol Sci. 2022 Jan 20; 23 (3): 1138. doi: 10.3390/ijms23031138
16. Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science. 1996; 274 (5290): 1133–8.
17. Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Ann Rev Neurosci. 1998; 21: 149–86. doi: 10.1146/annurev.neuro.21.1.149
18. Carcea I, Froemke RC. Cortical plasticity, excitatory-inhibitory balance and sensory perception. Prog Brain Res. 2013; 207: 65–90. doi: 10.1016/B978-0-444-63327-9.00003-5
19. Moucha R, Kilgard MP. Cortical plasticity and rehabilitation. Prog Brain Res. 2006; 157: 111–22. doi: 10.1016/s0079-6123(06)57007-4
20. Magee JC, Grienberger C. Synaptic plasticity forms and functions. Annu Rev Neurosci. 2020; 43:95–117. doi: 10.1146/annurev-neuro-090919-022842
21. Hebb DO. The organization of behaviour. A neurophysichological theory. John Wiley & Sons, New York, NY, USA; 1949.
22. Löwel S, Singer W. Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science. 1992; 255 (5041): 209–12. doi: 10.1126/science.1372754
23. You SH, Jang S-H, Kim Y-H, et al. Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev Med Child Neurol. 2005; 47 (9): 628–35.
24. Prochnow D, Bermúdez i Badia S, Schmidt J, et al. A functional magnetic resonance imaging study of visuomotor processing in a virtual reality-based paradigm: rehabilitation gaming system. Eur J Neurosci. 2013; 37 (9): 1441–7. doi: 10.1111/ejn.12157
25. Deutsch J, McCoy SW. Virtual reality and serious games in neurorehabilitation of children and adults: prevention, plasticity and participation. Pediatr Phys Therapy. 2017; 29: S23. doi: 10.1097/PEP.0000000000000387
26. Chen Y, Fanchiang HD, Howard A. Effectiveness of virtual reality in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials. Physical Therapy. 2018; 98 (1): 63–77. doi: 10.1093/ptj/pzx107
27. Coco-Martin MB, Piñero DP, Leal-Vega L, et al. The potential of virtual reality for inducing neuroplasticity in children with amblyopia. J Ophthalmol. 2020; 2020: 7067846. doi: 10.1155/2020/7067846
28. Ghai S, Ghai I. Virtual reality enhances gait in cerebral palsy: a training dose-response meta-analysis. Front Neurol. 2019; 10: 236. doi: 10.3389/fneur.2019.00236
29. Chen X, Liu F, Lin S, Yu L, Lin R. Effects of virtual reality rehabilitation training on cognitive function and activities of daily living of patients with poststroke cognitive impairment: A Systematic review and meta-analysis. Arch Phys Med Rehabil. 2022; 103 (7): 1422–35. doi: 10.1016/j.apmr.2022.03.012
30. Bonanno M, De Luca R, De Nunzio AM, Quartarone A, Calabrò RS. Innovative technologies in the neurorehabilitation of traumatic brain injury: A systematic review. Brain Sci. 2022; 12 (12): 1678. doi: 10.3390/brainsci12121678
31. Hao J, Xie H, Harp K, Chen Z, Siu KC. Effects of virtual reality intervention on neural plasticity in stroke rehabilitation: A systematic review. Arch Phys Med Rehabil. 2022; 103 (3): 523–41. doi: 10.1016/j.apmr.2021.06.024
32. Zhang Q, Fu Y, Lu Y, et al. Impact of virtual reality-based therapies on cognition and mental health of stroke patients: Systematic review and meta-analysis. J Med Internet Res. 2021; 23 (11): e31007. doi: 10.2196/31007
33. Stanmore E, Stubbs B, Vancampfort D, de Bruin ED, Firth J. The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. 2017; 78: 34–43. doi: 10.1016/j.neubiorev.2017.04.011
34. Georgiev DD, Georgieva I, Gong Z, Nanjappan V, Georgiev GV. Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sci. 2021; 11: 221. https://doi.org/10.3390/brainsci11020221
35. Venkatesan M, Mohan H, Ryan JR, et al. Virtual and augmented reality for biomedical applications. Cell Reports Medicine. 2021; 7 (20): 100348. https://doi.org/10.1016/j.xcrm.2021.100348
36. Kohli V, Tripathi U, Chamola V, Rout BK, Kanhere SS. A review on virtual reality and augmented reality use-cases of brain computer interface based applications for smart cities. Microprocess. Microsystems. 2022; 88: 104392. https://doi.org/10.1016/j.micpro.2021.104392
37. Raphanel M, Shaughness G, Seiple WH, Arleo A. Current practice in low vision rehabilitation of age-related macular degeneration and usefulness of virtual reality as a rehabilitation tool. Aging Sci. 2018; 6: 194. doi: 10.4172/2329-8847.1000194
38. Mohammadi R, Semnani AV, Mirmohammadkhani M, Grampurohit N. Effects of virtual reality compared to conventional therapy on balance poststroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2019; 28 (7): 1787–98. doi: 10.1016/j.jstrokecerebrovasdis.2019.03.054
39. McKalin V. Augmented reality vs virtual reality: What are the differences and similarities. Tech Times. 2015; 5: 1–6. https://www.techtimes.com/articles/5078/20140406/augmented-reality-vs-virtual-reality-what-are-the-differences-and-similarities.htm
40. Bohil CJ, Alicea B, Biocca FA. Virtual reality in neuroscience research and therapy. Nat Rev Neurosci. 2011; 12 (12): 752–62. https://doi.org/10.1038/nrn3122
41. Wang W, Collinger JL, Perez MA, et al. Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys Med Rehabil Clin N Am. 2010; 21 (1): 157–78. doi: 10.1016/j.pmr.2009.07.003
42. Valeriani D, Santoro F, Ienca M. The present and future of neural interfaces. Front Neurorobot. 2022; 16: 953968. doi: 10.3389/fnbot.2022.953968
43. Soekadar SR, Birbaumer N, Slutzky MW, Cohe LG. Brain–machine interfaces in neurorehabilitation of stroke. Neurobiol Dis. 2015; 83: 172–9. doi: 10.1016/j.nbd.2014.11.025
44. Mahncke HW, Bronstone A, Merzenich M.M. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res. 2006; 157: 81–109. doi: 10.1016/S0079-6123(06)57006-2
45. Adamovich SV, Fluet GG, Tunik E, Merians A.S. Sensorimotor training in virtual reality: a review. NeuroRehabilitation. 2009; 25 (1): 29–44. doi: 10.3233/NRE-2009-0497
46. Shaffer J. Neuroplasticity and clinical practice: building brain power for health. Front Psychol. 2016; 7: 1118. doi: 10.3389/fpsyg.2016.01118
47. Piccione J, Collett J, De Foe A. Virtual skills training: the role of presence and agency. Heliyon. 2019; 5 (11): e02583. https://doi.org/10.1016/j.heliyon.2019.e02583
48. Turnbull PRK, Phillips JR. Ocular effects of virtual reality headset wear in young adults. Sci Rep. 2017; 7: 16172. doi: 10.1038/s41598-017-16320-6
49. Tychsen L, Foeller P. Effects of immersive virtual reality headset viewing on young children: visuomotor function, postural stability, and motion sickness. Am J Ophthalmol. 2020 209: 151–9. doi: 10.1016/j.ajo.2019.07.020
50. Vedamurthy I, Knill DC, Huang SJ, et al. Recovering stereo vision by squashing virtual bugs in a virtual reality environment. Philos Trans R Soc. B: Biol Sci. 2016; 371 (1697): 20150264. doi: 10.1098/rstb.2015.0264
51. Ehrlich JR, Ojeda LV, Wicker D, et al. Head-mounted display technology for low-vision rehabilitation and vision enhancement. Am J Ophthalmol. 2017; 176: 26–32. doi: 10.1016/j.ajo.2016.12.021
52. Oei AC, Patterson MD. Enhancing cognition with video games: a multiple game training study. PLoS ONE. 2013; 8:e58546. doi: 10.1371/journal.pone.0058546
53. Green CS, Bavelier D. Effect of action video games on the spatial distribution of visuospatial attention. J Exp Psychol Hum Percept Perform. 2006; 32: 1465. doi: 10.1037/0096-1523.32.6.1465
54. Polat U, Ma-Naim T, Spierer A. Treatment of children with amblyopia by perceptual learning. Vis Res. 2009; 49 (21): 2599–603. doi: 10.1016/j.visres.2009.07.008
55. Astle AT, Webb BS, McGraw PV. Can perceptual learning be used to treat amblyopia beyond the critical period of visual development? Ophthalmic and Physiological Optics. 2011; 31 (6): 564–73, 2011. doi: 10.1111/j.1475-1313.2011.00873.x
56. Waddingham PE, Cobb SV, Eastgate RM, Gregson RM. Virtual reality for interactive binocular treatment of amblyopia. Int J Disabil Hum Dev. 2006; 5: 155–62. doi: 10.1515/IJDHD.2006.5.2.155
57. Herbison N, MacKeith D, Vivian A, et al. Randomised controlled trial of video clips and interactive games to improve vision in children with amblyopia using the I-BiT system. Brit J Ophthalmol. 2016; 100 (11): 1511–16. doi: 10.1136/bjophthalmol-2015-307798
58. Ved T, Chauhan J, Katre N. Syt-AJ: Treating lazy eye using virtual reality. In: Advanced Computing Technologies and Applications. Mumbai: Springer. 2020: 281–92.
59. Levi DM, Li RW. Perceptual learning as a potential treatment for amblyopia: a mini-review. Vis Res. 2009; 49 (21): 2535–49. doi: 10.1016/j.visres.2009.02.010
60. Hess RF, Mansouri B, Thompson B. A new binocular approach to the treatment of amblyopia in adults well beyond the critical period of visual development. Restorat Neurol Neurosci. 2010; 28 (6): 793–802. doi: 10.3233/RNN-2010-0550
61. Li J, Thompson B, Deng D, et al. Dichoptic training enables the adult amblyopic brain to learn. Curr Biol. 2013; 23 (8): 308–9. doi: 10.1016/j.cub.2013.01.059
62. Li SL, Reynaud A, Hess RF, et al. Dichoptic movie viewing treats childhood amblyopia. J Am Assoc Pediatr Ophthalmol Strabismus. 2015; 19: 401–5. doi: 10.1016/j.jaapos.2015.08.003
63. Kühn S, Gleich T, Lorenz RC, Lindenberger U, Gallinat J. Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Molecular Psychiatry. 2014; 19 (2): 265–71. https://doi.org/10.1038/mp.2013.120
64. Gong D, He H, Liu D, et al. Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing. Sci Rep. 2015; 5 (1): 9763. https://doi.org/10.1038/srep09763
65. Boot WR, Kramer AF, Simons DJ, Fabiani M, Gratton G. The effects of video game playing on attention, memory, and executive control. Acta Psychol. 2008; 129 (3): 387–98. doi: 10.1016/j.actpsy.2008.09.005
66. Bavelier D, Green CS. The brain-boosting power of video games. Sci Am. 2016; 315: 26–31. doi: 10.1038/scientificamerican0716-26
67. Durrie D, McMinn PS. Computer-based primary visual cortex training for treatment of low myopia and early presbyopia. Trans Am Ophthalmol Soc. 2007; 105: 132–40.
68. Maniglia M, Cottereau BR, Soler V, Trotter Y. Rehabilitation approaches in macular degeneration patients. Front Syst Neurosci. 2016; 10: 107. https://doi.org/10.3389/fnsys.2016.00107
69. Zhao F, Chen L, Ma H, Zhang W. Virtual reality: a possible approach to myopia prevention and control? Med Hypotheses. 2018; 121: 1–3. doi: 10.1016/j.mehy.2018.09.021
70. Huang Y, Li M, Shen Y, et al. Study of the immediate effects of autostereoscopic 3D visual training on the accommodative functions of myopes. Invest Ophthalmol Vis Sci. 2022; 63:9. doi: 10.1167/iovs.63.2.9
71. Ali SG, Wang X, Li P. et al. A systematic review: Virtual-reality-based techniques for human exercises and health improvement. Front Public Health. 2023; 11: 1143947. doi: 10.3389/fpubh.2023.1143947
72. Seiple W, Grant P, Szlyk JP. Reading rehabilitation of individuals with AMD: relative effectiveness of training approaches. Invest Ophthalmol Vis Sci. 2011; 52 (6): 2938–44. doi: 10.1167/iovs.10-6137
73. Chung ST. Improving reading speed for people with central vision loss through perceptual learning. Invest Ophthalmol Vis Sci. 2011; 52 (2): 1164–70. doi: 10.1167/iovs.10-6034
74. Coco-Martín MB, Cuadrado-Asensio R, López-Miguel A. Design and evaluation of a customized reading rehabilitation program for patients with age-related macular degeneration. Ophthalmology. 2013; 120 (1): 151–9. doi: 10.1016/j.ophtha.2012.07.035
75. Virgili G, Acosta R, Bentley SA, et al. Reading aids for adults with low vision. Cochrane Database Syst Rev. 2018 Apr 17; 4 (4): CD003303. doi: 10.1002/14651858.CD003303.pub4
76. Bowman EL, Liu L. Individuals with severely impaired vision can learn useful orientation and mobility skills in virtual streets and can use them to improve real street safety. PLoS One. 2017; 12: e0176534. doi: 10.1371/journal.pone.0176534
77. Нероев В.В., Зуева М.В., Манахов П.А., Нероева Н.В. и др. Способ улучшения функциональной активности зрительной системы с помощью фрактальной фототерапии с использованием стереоскопического дисплея. Патент РФ № 2773684. 2022.
78. Markowitz SN. State-of-the-art: low vision rehabilitation. Can J Ophthalmol. 2016; 51 (2): 59–66. doi: 10.1016/j.jcjo.2015.11.002
Рецензия
Для цитирования:
Зуева М.В., Котелин В.И., Нероева Н.В., Журавлева А.Н., Цапенко И.В. Виртуальная реальность в зрительной реабилитации. Российский офтальмологический журнал. 2024;17(3):113-118. https://doi.org/10.21516/2072-0076-2024-17-3-113-118
For citation:
Zueva M.V., Kotelin V.I., Neroeva N.V., Zhuravleva A.N., Tsapenko I.V. Virtual reality in visual rehabilitation. Russian Ophthalmological Journal. 2024;17(3):113-118. (In Russ.) https://doi.org/10.21516/2072-0076-2024-17-3-113-118