Preview

Russian Ophthalmological Journal

Advanced search

Mechanisms of visual impairment in COVID-19 and post-COVID syndrome: TRP channels as pathogenetic targets and objects of therapy

https://doi.org/10.21516/2072-0076-2024-17-3-119-125

Abstract

This article presents a literature review on visual impairments in COVID-19 and post-COVID syndrome and their possible pathogenesis. The data on possible cellular targets of SARS-CoV-2 in various damaged eye structures are discussed. The proposed approaches to the treatment of eye disorders in COVID-19 are reviewed. The main attention is given to the recently discovered family of cation channels — the channels with a transient receptor potential, or TRP channels, as possible targets of SARS-CoV-2 action on eye cells. The structure and properties of TRP channels, in particular their ability to act as receptors for temperature, pain and inflammation, and to participate in phototransduction, are examined. TRP channels are shown to be present in the anterior and posterior segments of the eye. The relationships are explored between TRP subfamilies, in particular TRPV1 channels, and various pathologies, such as dry eye syndrome, glaucoma, eye trauma, retinopathy, etc. Evidence is provided for a direct involvement of TRP channels in the pathogenesis of pulmonary pathology in COVID-19, and their role in the pathogenesis of many other diseases, including neuropathic and inflammatory pain, stroke, migraine, neurodegenerative disorders. The currently known pharmacological approaches targeting TRP channels are discussed. The paper highlights the importance of closely monitoring TRP channels activity, particularly TRPV1 ones, in assessing various COVID-19 manifestations, including eye infections.

About the Authors

E. M. Mironova
FIRN M Scientific Research Center
Russian Federation

Emiliya M. Mironova — Dr. of Biol. Sci., Professor.

6, Oktyabrskaya St., Moscow, 127018



O. P. Balezina
Lomonosov Moscow State University
Russian Federation

Olga P. Balezina — Dr. of Biol. Sci., Professor, Department of physiology, Faculty of biology.

1, Bldg. 12, Leninskie Gory, Moscow, 119234



References

1. Neroev V.V., Krichevskaya G.I., Balatskaya N.V. COVID-19 and problems of ophthalmology. Russian ophthalmological journal. 2020; 13 (4): 99–104 (In Russ.). https://doi.org/10.21516/2072-0076-2020-13-4-99-104

2. Menuchin-Lasowski Y, Schreiber A, Lecanda A, et al. SARS-CoV-2 infects and replicates in photoreceptor and retinal ganglion cells of human retinal organoids. Stem Cell Reports. April 2022; 17 (4): 789–803. doi: 10.1016/j.stemcr.2022.02.015

3. Leonardi A, Rosani U, Brun P. Ocular surface expression of SARS-CoV-2 receptors. Ocul Immunol Inflamm. 2020 Jul 3; 28 (5): 735–8. doi: 10.1080/09273948.2020.1772314

4. Yu J, Chai P, Ge S, Fan X. Recent understandings toward coronavirus disease 2019 (COVID-19): From bench to bedside. Front Cell Dev Biol. 2020; 8: 476. doi: 10.3389/fcell.2020.00476

5. Kurysheva N.I., Pererva O.A., Nikitina A.D. Eye damage in COVID-19. Part 1: Involvement of the eye in SARS-CoV-2 virus transmission and anterior segment complications. Russian ophthalmological journal. 2022; 15 (4): 156–65 (In Russ.). https://doi.org/10.21516/2072-0076-2022-15-4-156-165

6. Kurysheva N.I., Evdokimova O.A., Nikitina A.D. Eye damage in COVID-19. Part 2: posterior segment complications, neuro-ophthalmic manifestations, vaccination and risk factors. Russian Ophthalmological Journal. 2023; 16 (1): 157–67 (In Russ.). https://doi.org/10.21516/2072-0076-2023-16-1-157-167

7. Trubilin V.N., Polunina E.G., Kurenkov V.V., et al. The influence of the COVID-19 pandemic on ophthalmological practice. Historical aspects and clinical examples. Ophthalmology in Russia. 2021; 18 (2): 181–7 (In Russ.). https://doi.org/10.18008/1816-5095-2021-2-181-187

8. Mocanu V, Dharmesh Bhagwani D, Sharma A, et al. COVID-19 and the eye: conjunctivitis, a lone COVID-19 finding — A case-control study. Med Princ Pract. 2022; 31: 66–73. doi: 10.1159/000521808

9. Markelova O.I., Petrov S.Yu., Okhotsimskaya T.D. The impact of the new coronavirus infection COVID-19 on the microcirculation of the eye. Russian Ophthalmological Journal. 2023; 16 (2): 177–82 (In Russ.). https://doi.org/10.21516/2072-0076-2023-16-2-177-182

10. Latypova E.A., Zagidullina A.Sh., Mukhamadeev T.R., et al. Ophthalmological complications of the new coronavirus infection COVID-19. Clinical cases. Russian ophthalmological journal. 2024; 17 (1): 119–24 (In Russ.). https://doi.org/10.21516/2072-0076-2024-17-1-119-124

11. Maychuk D.Yu., Atlas S.N., Loshkareva A.O. Ocular manifestations of COVID-19 coronavirus infection (clinical observations). Vestnik oftal’mologii. 2020; 136 (4): 118–23 (In Russ.). http://doi/org/10/17116/oftalma2020136041118

12. Teimouri H, Rasoulinejad SA. Updates on Coronavirus-related ocular manifestations: From the past to COVID-19 pandemic. Arch Pediatr Infect Dis. 2022; 10 (3): e117176. doi: 10.5812/pedinfect-117176

13. Kitazawa K, Deinhardt-Emmer S, Inomata T, Deshpande S, Sotozono C. The transmission of SARS-CoV-2 infection on the ocular surface and prevention strategies. Cell. 2021; 10: 796. https://doi.ogr/10.33.90/cells10040796

14. Aytogan H, Ayintap E, Ozkalay Yilmaz N. Detection of Coronavirus disease 2019 viral material on environmental surfaces of an ophthalmology examination room. JAMA Ophthalmol. 2020; 138(9):990–3. doi:10.1001/jamaophthalmol.2020.3154

15. Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium. 2005 Sep-Oct; 38 (3–4): 233–52. doi: 10.1016/j.ceca.2005.06.028

16. Gladkikh I.N., Sintsova O.V., Leichenko E.V., Kozlov S.A. TRPV1 ion channel: Structural features, modulators of activity, therapeutic potential. Uspekhi Biol. Khimii. 2021; 61: 107–54 (In Russ.).

17. Koivisto A-P, Belvisi MG, Gaudet R, Szallasi A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nature Reviews Drug Discovery. 2022; 21: 41–59. doi: 10.1038/s41573-021-00268-4

18. Clapham DE. TRP channels as cellular sensors. Nature. 2003 Dec 4; 426 (6966): 517–24. doi: 10.1038/nature02196

19. Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A potential drug target for treating various diseases. Cells. 2014 May 23; 3 (2): 517–45. doi: 10.3390/cells3020517

20. Križaj D, Cordeiro S, Strauß O, Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res. 2023 Jan; 92: 101114. doi: 10.1016/j.preteyeres.2022.101114

21. Yue L, Xu H. TRP channels in health and disease at a glance. J Cell Sci. 2021 Jul 1; 134 (13): jcs258372. doi: 10.1242/jcs.258372

22. Julius D, Basbaum J. Molecular mechanisms of nociception. Nature. 2001 Sep 13; 413 (6852): 203–10. doi: 10.1038/35093019

23. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci. 2001; 24: 487–517. doi: 10.1146/annurev.neuro.24.1.487

24. Maaroufi H. Interactions of SARS-CoV-2 spike protein and transient receptor potential (TRP) cation channels could explain smell, taste, and/or chemesthesis disorders. Preprint. 2021; 15 Jan 2021. https://arxiv.org/pdf/2101.06294

25. Yelshanskaya MV, Nadezhdin KD, Kurnikova MG, Sobolevsky A.I. Structure and function of the calcium-selective TRP Channel TRPV6. J Physiol. 2021; 599: 2673–97. doi:10.1113/JP279024

26. Fakih D, Guerrero-Moreno A, Baudouin C, et al. Capsazepine decreases corneal pain syndrome in severe dry eye disease. J Neuroinflammation. 2021 May 11; 18 (1): 111. doi: 10.1186/s12974-021-02162-7

27. Yang JM, Wei ET, Kim SJ, Yoon KC. TRPM8 channels and dry eye. Pharmaceutical. 2018; 11: 125. https://doi.org/10.3390/ph11040125

28. Yang T-J, Yu Y, Yang JY, et al. Involvement of transient receptor potential channels in ocular diseases: a narrative review. Ann Transl Med. 2022 Aug; 10 (15): 839. doi: 10.21037/atm-21-6145

29. Jaffal SM, Abbas MA. TRP channels in COVID-19 disease: Potential targets for prevention and treatment. Chem Biol Interact. 2021 Aug 25; 345: 109567. doi: 10.1016/j.cbi.2021.109567

30. Bousquet J, Czarlewski W, Zuberbier T, et al. Potential Interplay between Nrf2, TRPA1, and TRPV1 in nutrients for the control of COVID-19. Int Arch Allergy Immunol. 2021; 182 (4): 324–38. doi: 10.1159/000514204

31. Mironova E.M., Grishin E.V., Korolkova Yu.V., Khodjaev N.S., Balezina O.P. New properties of the drug Okovidit as a protector of ophthalmopathology and complications of COVID-19 developing with the participation of TRPV1- receptor channels. Russian ophthalmology online. 2021; 41 (In Russ.). https://eyepress.ru/article/novye-svoystva-preparata-okovidit-kak-protektora-oftal-mopatologii-i-oslozhneniy

32. Fallah HP, Ahuja E, Lin H, et al. A review on the role of TRP channels and their potential as drug targets an insight into the TRP channel drug discovery methodologies. Frontiers in Pharmacology. 2022; 13: 914499. doi:10.3389/phar.2022.914499

33. Nahama A, Ramachandran R, Cisternas AF, Ji H. The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis: A review. Med Drug Discov. 2020 Mar; 5: 100033. doi: 10.1016/j.medidd.2020.100033

34. Leidinger G, Flockerzi F, Hohneck J, et al. TRPC6 is altered in COVID-19 pneumonia. Chem Biol Interact. 2022 Aug 1; 362: 109982. doi: 10.1016/j.cbi.2022.109982

35. Andrew M, Jayaraman G.·Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohidrate Research. 2021; 108326 http://doi.org/10.1016/j.carres/2021/108326

36. Mironova E.M. The possibilities of preventing coronavirus infection with the help of the drug Okovidit. Russian ophthalmology online. 2020; 39 (In Russ.). https://eyepress.ru/article/vozmozhnosti-profilaktiki-zarazheniya-koronavirusom-s-pomoshch-yu-preparata-okovidit

37. Kwon PS, Oh H, Kwon SJ, et al. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov. 2020; 6: 50. https://doi.org/10.1038/s41421-020-00192-8

38. Pagarete A, Ramos AS, Puntervoll P, Allen MJ, Verdelho V. Antiviral potential of Algal metabolites -A comprehensive review. Mar Drugs. 2021 Feb 6; 19 (2): 94. doi: 10.3390/md19020094

39. Mironova E, Grishin E, Pchelintseva O, Korolkova U. Suppression of TRPV1 channels activity is a possible way in treatment of ophthalmic disease. Acta Ophthalmologica. Special Issue: Abstracts from the EVER. 2013; 91: s252. https://doi.org/10.1111/j.1755-3768.2013.F009.x

40. Mironova E, Grishin E. The TRPV 1 receptors are the target for drug therapy of ophthalmic diseases. SOE; 2017. Abstract: A-874-0003-00641.


Review

For citations:


Mironova E.M., Balezina O.P. Mechanisms of visual impairment in COVID-19 and post-COVID syndrome: TRP channels as pathogenetic targets and objects of therapy. Russian Ophthalmological Journal. 2024;17(3):119-125. (In Russ.) https://doi.org/10.21516/2072-0076-2024-17-3-119-125

Views: 289


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)