Preview

Russian Ophthalmological Journal

Advanced search

Surgical treatment of diabetic macular edema

https://doi.org/10.21516/2072-0076-2024-17-3-139-144

Abstract

Diabetic retinopathy (DR) and diabetic macular edema (DME) present a serious medical and social issue of modern society. DME is one of the most common complications of DR and a frequent cause of a sudden decrease in visual acuity and the onset of disability. The review describes the main links of DME pathogenesis, including the participation of inflammatory cytokines, glycation products, reactive oxygen species, vascular endothelial growth factor and various cellular damages. The existing classifications of the disease, instrumental methods of diagnosis and treatment are presented, primarily those using angiogenesis inhibitors alone or in combination with laser treatment and intravitreal injection of an implant with dexamethasone. Various methods of surgical treatment of DR, which can impact the course of DME, are analyzed, including vitreoretinal surgery using vitrectomy with or without membrane peeling of the internal limiting and epiretinal membranes. Factors predicting the effectiveness of these surgical interventions are listed: these can be based on the general somatic condition of the patient and on the results of optical coherence tomography.

About the Authors

R. R. Fayzrakhmanov
N.I. Pirogov National Medical and Surgical Center, center of ophthalmology; N.I. Pirogov National Medical Surgical Center, Institute of Advanced Training of Physicians
Russian Federation

Rinat R. Fayzrakhmanov — Dr. of Med. Sci., professor, director of the center of ophthalmology, N.I. Pirogov National Medical and Surgical Center; head of the chair of ophthalmology, N.I. Pirogov National Medical Surgical Center, Institute of Advanced Training of Physicians.

70, Nizhnyaya Pervomayskaya St.,105203 Moscow; 65, Nizhnyaya Pervomayskaya St., Moscow, 105203



O. A. Pavlovsky
N.I. Pirogov National Medical and Surgical Center, center of ophthalmology; N.I. Pirogov National Medical Surgical Center, Institute of Advanced Training of Physicians
Russian Federation

Oleg А. Pavlovskiy — Cand. of Med. Sci., ophthalmologist, N.I. Pirogov National Medical and Surgical Center, center of ophthalmology; assistant of the chair of ophthalmology, N.I. Pirogov National Medical Surgical Center, Institute of Advanced Training of Physicians.

70, Nizhnyaya Pervomayskaya St.,105203 Moscow; 65, Nizhnyaya Pervomayskaya St., Moscow, 105203



M. A. Lukinykh
Vision Ophthalmological center
Russian Federation

Mikhail A. Lukinykh — ophthalmologist.

3, Smolenskaya square, Moscow, 121099



N. S. Egorova
Vision Ophthalmological center
Russian Federation

Natalia S. Egorova — Cand. of Med. Sci., ophthalmologist.

3, Smolenskaya square, Moscow, 121099



References

1. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology. 2009; 116 (3): 497–503. doi: 10.1016/j.ophtha.2008.10.016

2. WHO. Global Report on Diabetes: World Health Organization. 2016. [cited 2017]. Available at: http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf?ua=1

3. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015 Sep 30; 2: 17. doi: 10.1186/s40662-015-0026-2

4. Burke SJ, Karlstad MD, Eder AE, et al. Pancreatic beta-Cell production of CXCR3 ligands precedes diabetes onset. Biofactors. 2016; 42 (6): 703–15. doi: 10.1002/biof.1304

5. Bhagat N, Grigorian RA, Tutela A, Zarbin MA. Diabetic macular edema: pathogenesis and treatment. Surv Ophthalmol. 2009; 54 (1): 1–32. doi: 10.1016/j.survophthal.2008.10.001

6. Koskela UE, Kuusisto SM, Nissinen AE, Savolainen MJ, Liinamaa MJ. High vitreous concentration of IL-6 and IL-8, but not of adhesion molecules in relation to plasma concentrations in proliferative diabetic retinopathy. Ophthalmic Res. 2013; 49 (2): 108–14. doi: 10.1159/000342977

7. Mishra S, Mishra BB. Study of lipid peroxidation, nitric oxide end product, and trace element status in type 2 diabetes mellitus with and without complications. Int J Appl Basic Med Res. 2017; 7 (2): 88–93. doi: 10.4103/2229-516X.205813

8. Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care. 2003; 26 (9): 2653–64.

9. Ciulla TA, Harris A, Latkany P, et al. Ocular perfusion abnormalities in diabetes. Acta Ophthalmol Scand. 2002; 80 (5): 468–77.

10. Paget C, Lecomte M, Ruggiero D, Wiernsperger N, Lagarde M. Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation end products. Free Radic Biol Med. 1998; 25 (1): 121–9.

11. Barile GR, Pachydaki SI, Tari SR, et al. The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2005 Aug; 46 (8): 2916–24. doi: 10.1167/iovs.04-1409

12. Duh E, Aiello LP. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes. 1999 Oct; 48 (10): 1899–906. doi: 10.2337/diabetes.48.10.1899

13. Bazzoni G. Endothelial tight junctions: permeable barriers of the vessel wall. Thromb Haemost. 2006 Jan; 95 (1): 36–42. PMID: 16543959

14. Deissler HL, Deissler H, Lang GE. Inhibition of vascular endothelial growth factor (VEGF) is sufficient to completely restore barrier malfunction induced by growth factors in microvascular retinal endothelial cells. Br J Ophthalmol. 2011; 95 (8): 1151–6. doi: 10.1136/bjo.2010.192229

15. Gonzalez-Salinas R, Garcia-Gutierrez MC, Garcia-Aguirre G, et al. Evaluation of VEGF gene polymorphisms and proliferative diabetic retinopathy in Mexican population. Int J Ophthalmol. 2017; 10 (1): 135–9. doi: 10.18240/ijo.2017.01.22

16. Kawashima H, Mizukawa K, Kiryu J. Factors associated with visual recovery after sub-Tenon injection of triamcinolone acetonide in diabetic macular edema. Clin Ophthalmol. 2012; 6: 1307–14. doi: 10.2147/OPTH.S34631

17. Panozzo G, Cicinelli MV, Augustin AJ, et al. An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification. Eur J Ophthalmol. 2020 Jan; 30 (1): 8–18. doi: 10.1177/1120672119880394

18. Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases. Surv Ophthalmol. 2017; 62 (6): 838–66. doi: 10.1016/j.survophthal.2017.05.006

19. Matsunaga DR, Yi JJ, De Koo LO, et al. Optical Coherence Tomography Angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging Retina. 2015; 46 (8): 796–805. doi: 10.3928/23258160-20150909-03

20. Fursova A.Zh., Derbeneva A.S., Tarasov M.S., et al. Clinical efficacy of antiangiogenic therapy for diabetic macular edema in real clinical practice (2-year results). Russian ophthalmological journal. 2021; 14 (2): 42–9 (In Russ.). https://doi.org/10.21516/2072-0076-2021-14-2-42-49

21. Liberski S, Wichrowska M, Kocięcki J. Aflibercept versus Faricimab in the treatment of neovascular age-related macular degeneration and diabetic macular edema: A Review. Int J Mol Sci. 2022 Aug 20; 23 (16): 9424. doi: 10.3390/ijms23169424

22. Massin P, Bandello F, Garweg JG, et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care. 2010; 33 (11): 2399–405. doi: 10.2337/dc10-0493

23. Sahni J, Patel SS, Dugel PU, et al. Simultaneous Inhibition of Angiopoietin-2 and Vascular Endothelial Growth Factor-A with Faricimab in diabetic macular edema: BOULEVARD Phase 2 Randomized Trial. Ophthalmology. 2019 Aug; 126 (8): 1155–70. doi: 10.1016/j.ophtha.2019.03.023

24. Wykoff CC, Abreu F, Adamis AP, et al.; YOSEMITE and RHINE Investigators. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet. 2022 Feb 19; 399 (10326): 741–55. doi: 10.1016/S0140-6736(22)00018-6

25. Mitchell P, Bandello F, Schmidt-Erfurth U, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011; 118 (4): 615–25. doi: 10.1016/j.ophtha.2011.01.031 pmid: 21459215

26. Arevalo JF, Lasave AF, Wu L, et al. Intravitreal bevacizumab for diabetic macular oedema: 5-year results of the Pan-American Collaborative Retina Study group. Br J Ophthalmol. 2016; 100 (12): 1605–10. doi: 10.1136/bjophthalmol-2015-307950

27. Haller JA, Bandello F, Belfort R Jr, et al. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology. 2010; 117 (6): 1134–46 e3. doi: 10.1016/j.ophtha.2010.03.032

28. Fursova A.Zh., Derbeneva A.S., Amir I.M., et al. Aqeuous humor cytokines concentration changes in patients with diabetic macular edema after intravitreal pharmacotherapy. Russian ophthalmological journal. 2023; 16 (2): 124–9 (In Russ.). https://doi.org/10.21516/2072-0076-2023-16-2-124-129

29. EMC. Ozurdex Summary of Product Characteristics. EMC. 2017 [cited 2017]. Available at: http://www.medicines.org.uk/emc

30. London NJ, Chiang A, Haller JA. The dexamethasone drug delivery system: indications and evidence. Adv Ther. 2011; 28 (5): 351–66. doi: 10.1007/s12325-011-0019-z

31. Chang-Lin JE, Attar M, Acheampong AA, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2011; 52 (1): 80–6. doi: 10.1167/iovs.10-5285

32. Callanan DG, Gupta S, Boyer DS, et al. Dexamethasone intravitreal implant in combination with laser photocoagulation for the treatment of diffuse diabetic macular edema. Ophthalmology. 2013; 120 (9): 1843–51. doi: 10.1016/j.ophtha.2013.02.018

33. Boyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014; 121 (10): 1904–14. doi: 10.1016/j.ophtha.2014.04.024

34. Gillies MC, Lim LL, Campain A, et al. A randomized clinical trial of intravitreal bevacizumab versus intravitreal dexamethasone for diabetic macular edema: the BEVORDEX study. Ophthalmology. 2014; 121 (12): 2473–81. doi: 10.1016/j.ophtha.2014.07.002

35. Mastropasqua R, Toto L, Borrelli E, et al. Morphology and function over a one-year follow up period after intravitreal dexamethasone implant (Ozurdex) in patients with diabetic macular edema. PLoS One. 2015; 10 (12):e0145663. doi: 10.1371/journal.pone.0145663 pmid: 26720268

36. Simpson AR, Dowell NG, Jackson TL, Tofts PS, Hughes EH. Measuring the effect of pars plana vitrectomy on vitreous oxygenation using magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2013 Mar 21; 54 (3): 2028–34. doi: 10.1167/iovs.12-11258

37. Ghazi NG, Ciralsky JB, Shah SM, Campochiaro PA, Haller JA. Optical coherence tomography findings in persistent diabetic macular edema: the vitreomacular interface. Am J Ophthalmol. 2007; 144: 747–54.e2. doi: 10.1016/j.ajo.2007.07.012

38. Kim BY, Smith SD, Kaiser PK. Optical coherence tomographic patterns of diabetic macular edema. Am J Ophthalmol. 2006; 142 (3): 405–12.e1. doi: 10.1016/j.ajo.2006.04.023

39. Fayzrakhmanov R.R., Pavlovskiy O.A., Larina E.A. The method of closure of macular holes with a partial peeling of the internal limiting membrane: comparative analysis. Russian biomedical journal Medline.ru. 2019; 20: 187–200 (In Russ.).

40. Fayzrakhmanov R.R., Pavlovskiy O.A., Larina E.A. Modern methods of operative intervention of patients with macular hole. Bulletin of the N.I. Pirogov National Medical and Surgical Center. 2019; 14 (2): 98–104 (In Russ.). doi: 10.25881/BPNMSC.2018.64.37.021

41. Wong Y, Steel DHW, Habib MS, et al. Vitreoretinal interface abnormalities in patients treated with ranibizumab for diabetic macular oedema. Graefes Arch Clin Exp Ophthalmol. 2017; 255 (4): 733–42. doi: 10.1007/s00417-016-3562-0

42. Akbar Khan I, Mohamed MD, Mann SS, Hysi PG, Laidlaw DA. Prevalence of vitreomacular interface abnormalities on spectral domain optical coherence tomography of patients undergoing macular photocoagulation for Centre involving diabetic macular oedema. Br J Ophthalmol. 2015; 99 (8): 1078–81. doi: 10.1136/bjophthalmol-2014-305966

43. Ophir A, Martinez MR, Mosqueda P, Trevino A. Vitreous traction and epiretinal membranes in diabetic macular oedema using spectral-domain optical coherence tomography. Eye. 2010; 24 (10): 1545–53. doi: 10.1038/eye.2010.80

44. Hagenau F, Vogt D, Ziada J, et al. Vitrectomy for diabetic macular edema: optical coherence tomography criteria and pathology of the vitreomacular Interface. Am J Ophthalmol. 2019; 200: 34–46. doi: 10.1016/j.ajo.2018.12.004

45. Iglicki M, Lavaque A, Ozimek M, et al. Biomarkers and predictors for functional and anatomic outcomes for small gauge pars plana vitrectomy and peeling of the internal limiting membrane in naïve diabetic macular edema: the VITAL study. PLoS One. 2018; 13(7):e0200365. doi: 10.1371/journal.pone.0200365

46. Antoszyk AN, Glassman AR, Beaulieu WT, et al.; DRCR Retina Network. Effect of intravitreous Aflibercept vs vitrectomy with panretinal photocoagulation on visual acuity in patients with vitreous hemorrhage from proliferative diabetic retinopathy: A randomized clinical trial. JAMA. 2020 Dec 15; 324 (23): 2383–95. doi: 10.1001/jama.2020.23027

47. Morizane Y, Kimura S, Hosokawa M, et al. Planned foveal detachment technique for the resolution of diffuse diabetic macular edema. Jpn J Ophthalmol. 2015 Sep; 59 (5): 279–87. doi: 10.1007/s10384-015-0390-4

48. Yanyali A, Bozkurt KT, Macin A, Horozoglu F, Nohutcu AF. Quantitative assessment of photoreceptor layer in eyes with resolved edema after pars plana vitrectomy with internal limiting membrane removal for diabetic macular edema. Ophthalmologica. 2011; 226 (2): 57–63. doi: 10.1159/000327597

49. Sakamoto A, Nishijima K, Kita M, et al. Association between foveal photoreceptor status and visual acuity after resolution of diabetic macular edema by pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol. 2009; 247 (10): 1325–30. doi: 10.1007/s00417-009-1107-5

50. Otani T, Yamaguchi Y, Kishi S. Correlation between visual acuity and foveal microstructural changes in diabetic macular edema. Retina. 2010; 30 (5): 774–80. doi: 10.1097/IAE.0b013e3181c2e0d6

51. Yamada Y, Suzuma K, Ryu M, et al. Systemic factors influence the prognosis of diabetic macular edema after pars plana vitrectomy with internal limiting membrane peeling. Curr Eye Res. 2013; 38 (12): 1261–5. doi: 10.3109/02713683.2013.820327

52. Chhablani JK, Kim JS, Cheng L, Kozak I, Freeman W. External limiting membrane as a predictor of visual improvement in diabetic macular edema after pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol. 2012; 250 (10): 1415–20. doi: 10.1007/s00417-012-1968-x

53. Romano MR, Romano V, Vallejo-Garcia JL, et al. Macular hypotrophy after internal limiting membrane removal for diabetic macular edema. Retina. 2014; 34 (6): 1182–9. doi: 10.1097/IAE.0000000000000076

54. Ichiyama Y, Sawada O, Mori T, et al. The effectiveness of vitrectomy for diffuse diabetic macular edema may depend on its preoperative optical coherence tomography pattern. Graefes Arch Clin Exp Ophthalmol. 2016; 254 (8): 1545–51. doi: 10.1007/s00417-015-3251-4


Review

For citations:


Fayzrakhmanov R.R., Pavlovsky O.A., Lukinykh M.A., Egorova N.S. Surgical treatment of diabetic macular edema. Russian Ophthalmological Journal. 2024;17(3):139-144. (In Russ.) https://doi.org/10.21516/2072-0076-2024-17-3-139-144

Views: 431


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)