Preview

Russian Ophthalmological Journal

Advanced search

OCT ANGIOGRAPHY AND ITS ROLE IN THE STUDY OF RETINAL MICROCIRCULATION IN GLAUCOMA (PART ONE)

https://doi.org/10.21516/2072-0076-2018-11-2-82-86

Abstract

There are two different points of view on the role of ocular microcirculation in glaucoma. According to one of them, ocular hemoperfusion reduction is a consequence of nerve tissue atrophy. Other authors suggest that the retinal microcirculatory bed can already be damaged at early stages of the disease, causing the death of neuronal structures. However, little is known today about retinal microcirculation in glaucoma. The introduction of optical coherence tomography angiography (OCTA) has opened prospects in understanding the connection of microcirculatory and structural damages in glaucoma. The paper provides the data on the anatomy and physiology of microcirculatory bloodstream of the retina and optic disc, which were obtained using OCTA. For citation: Kurysheva N.I. OCT angiography and its role in the study of retinal microcirculation in glaucoma (part one). Russian ophthalmological journal. 2018; 11 (2): 82-6. doi: 10.21516/2072-0076-2018-11-2-82-86 (In Russian).

About the Author

N. I. Kurysheva
Ophthalmological Center, Moscow, Russia
Russian Federation


References

1. Van Buskirk E.M. Glaucomatous optic neuropathy. J. Glaucoma. 1994; Suppl. 3: 2-4. doi: org/10.1097/00061198-199400321-00002 2

2. Van Buskirk E.M., Cioffi G.A. Glaucomatous optic neuropathy. Am. J. Ophthalmol. 1992;113(4):447-452. doi.org/10.1016/s0002-9394(14)76171-9.

3. Burgoyne C.F., Downs J.C., Bellezza A.J., Suh J.K., Hart R.T. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005; 24(1): 39-73. doi.org/10.1016/j.preteyeres.2004.06.001

4. Caprioli J., Coleman A.L. Blood flow in glaucoma discussion. Blood pressure, perfusion pressure, and glaucoma. Am. J. Ophthalmol. 2010; 149(5): 704-12. doi.org/10.1016/j.ajo.2010.01.018

5. Quigley H.A. Neuronal death in glaucoma. Prog. Retin. Eye Res. 1999; 18(1): 39-57. doi.org/10.1016/s1350-9462(98)00014-7

6. Hayreh S.S. Ischemic optic neuropathies. Springer Publ. 2011. doi.org/10.1007/978-3-642-11852-4

7. Harris A., Ciulla T.A., Chung H.S., Martin B. Regulation of retinal and optic nerve blood flow. Arch Ophthalmol. 1998; 116(11): 1491-.5. doi.org/10.1001/archopht.116.11.1491

8. Hood D.C., Raza A.S., de Moraes C.G.V., et al. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Trans. Vis. Sci. Tech. 2012; 1(1): 3 doi.org/10.1167/tvst.1.1.3

9. Lan Y.W., Wang I.J., Hsiao Y.C., Sun F.J., Hsieh J.W. Characteristics of disc hemorrhage in primary angle closure glaucoma. Ophthalmology. 2008; 115(8): 1328-33. doi.org/10.1016/j.ophtha.2007.10.041

10. Park S.C., De Moraes C.G., Teng C.C., et al. Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011; 118(9): 1782-9. doi.org/10.1016/j.ophtha.2011.02.013

11. Hood D.C., Fortune B., Arthur S.N., et al. Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography. J. Glaucoma. 2008; 17(7):519-28. doi.org/10.1097/ijg.0b013e3181629a02

12. Xin D., Talamini C.L., Raza A.S., et al. Hypodense regions (“holes”) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects. Invest. Ophthalmol. Vis. Sci. 2011; 52(10): 7180-6. doi.org/10.1167/iovs.11-7716

13. Curcio C.A., Messinger J.D., Sloan K.R. Human choroidal layer thicknesses measured in macula-wide, high-resolution histologic sections. Invest. Ophthalmol. Vis. Sci. 2011; 52: 3943-54. doi.org/10.1167/iovs.10-6377

14. Leite M.T., Zangwill L.M., Weinreb R.N., et al. Effect of disease severity on the performance of Cirrus spectral-domain OCT for glaucoma diagnosis. Invest. Ophthalmol. Vis. Sci. 2010; 51(8): 4104-9. doi.org/10.1167/iovs.09-4716

15. Leung C.K., Chan W.M., Yung W.H., et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005; 112(3): 391-400. doi.org/10.1016/j.ophtha.2004.10.020

16. Paunescu L.A., Schuman J.S., Price L.L., et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest. Ophthalmol. Vis. Sci. 2004; 45(6): 1716-24. doi.org/10.1167/iovs.03-0514

17. Scoles D., Gray D.C., Hunter J.J., et al. In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison. BMC Ophthalmol. 2009; 9:9. doi.org/10.1186/1471-2415-9-9

18. Toussaint D., Kuwabara T., Cogan D.G. Retinal vascular patterns. II. Human retinal vessels studied in three dimensions. Arch. Ophthalmol. 1961; 65: 575-81. doi.org/10.1001/archopht.1961.01840020577022

19. Chan G., Balaratnasingam C., Xu J., et al. In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico- histological correlation. Microvasc. Res. 2015; 100: 32-39. doi.org/10.1016/j.mvr.2015.04.006

20. Yu P.K., Cringle S.J., Yu D.Y. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp. Eye. Res. 2014; 129: 83-92. doi.org/10.1016/j.exer.2014.1 0.020

21. Tan P.E., Balaratnasingam C., Xu J., Mammo Z., et al. Quantitative comparison of retinal capillary images derived by speckle variance optical coherence tomography with histology. Invest. Ophthalmol. Vis. Sci. 2015; 56(6): 3989-96. doi.org/10.1167/iovs.14-15879

22. Mase T., Ishibazawa A., Nagaoka T., Yokota H., Yoshida A. Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 2016; 57(9): 504-10. doi.org/ 10.1167/iovs.15-18877

23. Talusan E., Schwartz B. Specificity of fluorescein angiographic defects of the optic disc in glaucoma. Arch. Ophthalmol. 1977; 95(12): 2166-75. doi.org/10.1001/archopht.1977.04450110069003

24. Schwartz B., Rieser J.C., Fishbein S.L. Fluorescein angiographic defects of the optic disc in glaucoma. Arch. Ophthalmol. 1977; 95(11): 1961-74. doi.org/10.1001/archopht.1977.04450110055002

25. Piltz-Seymour J.R., Grunwald J.E., Hariprasad S.M., Dupont J. Optic nerve blood flow is diminished in eyes of primary open angle glaucoma suspects. Am. J. Ophthalmol. 2001; 132(1): 63-69. doi.org/10.1016/s0002-9394(01)00871-6

26. Hamard P., Hamard H., Dufaux J., Quesnot S. Optic nerve head blood flow using a laser Doppler velocimeter and haemorheology in primary open-angle glaucoma and normal pressure glaucoma. Br. J. Ophthalmol. 1994; 78(6): 449-53. doi.org/10.1136/bjo.78.6.449

27. Michelson G., Langhans M.J., Groh M.J. Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open angle glaucoma. J. Glaucoma. 1996; 5(2): 91-8. doi.org/10.1097/00061198-199604000-00003

28. Yokoyama Y., Aizawa N., Chiba N., et al. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin. Ophthalmol. 2011; 5: 1721-7. doi.org/10.2147/opth.s23204

29. Schuman J.S. Measuring blood flow: so, what? JAMA Ophthalmol. 2015; 133(9): 1052-105 doi.org/10.1001/jamaophthalmol.2015.2287

30. Yaoeda K., Shirakashi M., Funaki S., et al. Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry. Am J Ophthalmol 2000; 129(6): 734-9. doi.org/10.1016/s0002-9394(00)00382-2.

31. Blatter C., Grajciar B., Schmetterer L., Leitgeb R.A. Angle independent flow assessment with bidirectional Doppler optical coherence tomography. Opt. Lett. 2013; 38(21): 4433-6. doi: 10.1364/OL.38.004433

32. Formaz F., Riva C.E., Geiser M. Diffuse luminance flicker increases retina vessel diameter. Curr. Eye Res. 1997; 16(12): 1252-7. doi.org/10.1076/ceyr.16.12.1252.5021

33. Harris A., Ciulla T.A., Chung H.S., Martin B. Regulation of retinal and optic nerve blood flow. Arch. Ophthalmol. 1998;116(11):1491-5. doi.org/10.1001/archopht.116.11.1491

34. Dai C., Lui X., Zhang H.F., Puliafito C.A., Jiao S. Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2013; 54(13): 7998-8003. doi.org/10.1167/iovs.13-12318

35. Garcia J., Garcia P.R. Retinal blood flow in the normal human eye using the Cannon laser blood flowmeter. Rosen. Ophthalmic. Res. 2002; 34(5): 295-9. doi.org/10.1159/000065600

36. Spaide R.F., Klancnik J.M. Jr., Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015; 133(1): 45-50. doi.org/10.1001/jamaophthalmol.2014.3616

37. Курышева Н.И. Оптическая когерентная томография в диагностике глаукомы. Москва: Гринлайт, 2015. Kurysheva N.I. Optical coherence tomography in glaucoma diagnostics. Moscow: Greenlight Publ.; 2015. (In Russian).

38. Savastano M., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015; 35(11): 2196-203. doi.org/10.1097/iae.0000000000000635

39. Hogan M., Alvarado J., Weddell J.E. Histology of the human eye - an atlas and textbook. Philadelphia: WB Saunders; 1971. doi.org/10.1016/0002-9394(72)90324-8

40. Лумбросо Б., Хуанг Д., Чен Ч.Д. и др. ОКТ-ангиография. Клинический атлас. Пер. с англ. Москва: Издательство Панфилова; 2017: 38-40. Lumbroso B., Khuang D., Chen Ch. D., et al. OCT-angiography. Clinical atlas. Translation from English. Moscow: Panfilova Publ.; 2017: 38-40. (In Russian).

41. Duke-Elder S. The anatomy of visual system. London. 1961; 2: 372-6. doi.org/10.1136/bmj.1.5241.1742-a

42. Provis J.M. Development of the primate retinal vasculature. Progress in Retinal and Eye Research. 2001; 20: 799-821.

43. Snodderly D. M., Weinhaus R. S., Choi J. C. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J. Neurosci. 1992; 12: 1169-93.

44. Campbell J., Zhang M., Hwang T., et al. Detailed vascular anatomy of the human retina by projection- resolved optical coherence tomography angiography. Scientific Reports. 2017. 7: 42201. doi: 10.1038/srep42201

45. Coscas G.J., Lupidi M., Coscas F., Cagini C., Souied E.H. Optical coherence tomography angiography versus traditional multi-modal imaging in assessing the activity of exudative age-related macular degeneration: a new diagnostic challenge. Retina. 2015;35(11):2219-28. doi.org/10.1097/iae.0000000000000766

46. Bonnin S., Mané V., Couturier A., et al. New insight into the macular deep vascular plexus imaged by optical coherence tomography angiography. Retina 2015; 35(11): 2347-52. doi.org/10.1097/iae.0000000000000839

47. Coscas F., Sellam A., Glacet- Bernard A., et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 2016; 57(9): 211-223. doi.org/10.1167/iovs.15-18793

48. Hayreh S.S. In vivo choroidal circulation and its watershed zones. Eye (Lond) 1990; 4(pt 2): 273-89. doi.org/10.1038/eye.1990.39

49. Bird A.C., Weale R.A. On the retinal vasculature of the human fovea. Exp. Eye Res. 1974; 19: 409-17. doi.org/10.1016/0014-4835(74)90050-5

50. Samara W.A., Say E.A., Khoo C.T., et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015; 35(11): 2188-95. doi.org/10.1097/iae.0000000000000847

51. Shahlaee A., Pefkianaki M., Hsu J., Ho A.C. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am. J. Ophthalmol. 2016; 161(Jan.): 50-5. e1. doi: 10.1016/j.ajo.2015.09.026

52. Kuehlewein L., Tepelus T.C., An L., et al. Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography. Invest. Ophthalmol. Vis Sci. 2015; 56(6): 3984-8. doi.org/10.1167/iovs.15-16510

53. Pechauer A.D., Yali Jia, Liang Liu, et al. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest. Ophthalmol. Vis. Sci. 2015; 56(5): 3287-91. doi.org/10.1167/iovs.15-16655

54. Pechauer A.D., Tan O., Liu L., et al. Retinal blood flow response to hyperoxia measured with en face Doppler optical coherence tomography. Invest. Ophthalmol. Vis Sci. 2016; 57(9): 141-5. doi.org/ 10.1167/iovs.15-18917

55. Xu Р., Deng G., Jiang C., Kong X., Yu J., Sun X. Microcirculatory responses to hyperoxia in macular and peripapillary regions. Invest. Ophthalmol. Vis. Sci. 2016; 57(10): 4464-8. doi.org/10.1167/iovs.16-19603


Review

For citations:


Kurysheva N.I. OCT ANGIOGRAPHY AND ITS ROLE IN THE STUDY OF RETINAL MICROCIRCULATION IN GLAUCOMA (PART ONE). Russian Ophthalmological Journal. 2018;11(2):82-86. (In Russ.) https://doi.org/10.21516/2072-0076-2018-11-2-82-86

Views: 1168


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)