Neuroinflammation as a factor of pathogenesis of glaucomatous optic neuropathy
https://doi.org/10.21516/2072-0076-2024-17-4-135-140
Abstract
The modern pathogenesis of the neurodegenerative process in glaucoma identifies several key risk factors for its development: ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. An analysis of recent studies shows that in glaucomatous optic neuropathy, as in other neurodegenerative diseases, the immune system is involved in the pathological process, and immunoregulation is carried out mainly by retinal glial cells, microglia, astrocytes, Müller cells and the complement system. Chronic activation of glial cells caused by increased intraocular pressure in glaucoma can provoke a pro-inflammatory state at the retinal level, causing disruption of the blood-retinal barrier and death of retinal ganglion cells. The review presents pro-inflammatory markers of glaucoma, immunomodulatory and pro-inflammatory mediators, shows the role of a number of metalloproteinases and their tissue inhibitors, as well as pro-inflammatory cytokines in the development of glaucoma.
Keywords
About the Authors
T. A. PavlenkoRussian Federation
Tatyana A. Pavlenko — Cand. Med. Sci., head of the department of pathophysiology and biochemistry.
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
S. Yu. Petrov
Russian Federation
Sergey Yu. Petrov — Dr. of Med. Sci., head of glaucoma department.
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
E. N. Iomdina
Russian Federation
Elena N. Iomdina — Dr. of Biol. Sci., professor, principal researcher, department of refraction pathology, binocular vision and ophthalmoergonomics.
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
References
1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006; 90 (3): 26–27. doi:10.1136/bjo.2005.081224
2. Sotimehin AE, Ramulu PY. Measuring disability in glaucoma. J Glaucoma. 2018; 27 (11): 939–949. doi:10.1097/IJG.0000000000001068
3. Tham YC, Li X, Wong TY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121 (11): 2081–90. doi:10.1016/j.ophtha.2014.05.013
4. Neroev V.V., Kiseleva O.A., Bessmertny A.M. The main results of a multicenter study of epidemiological features of primary open-angle glaucoma in the Russian Federation. Russian ophthalmological journal. 2013; 6 (3): 4–7 (In Russ.).
5. Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002; 21 (4): 359–93. doi:10.1016/s1350-9462(02)00008-3
6. Harris A, Rechtman E, Siesky B, et al. The role of optic nerve blood flow in the pathogenesis of glaucoma. Ophthalmol Clin North Am. 2005; 18 (3): 345–53. doi:10.1016/j.ohc.2005.04.001
7. Jiang S, Kametani M, Chen DF. Adaptive immunity: New aspects of pathogenesis underlying neurodegeneration in glaucoma and optic neuropathy. Front Immunol. 2020; 11: 65. doi:10.3389/fimmu.2020.00065
8. Sreekumar PG, Hinton DR, Kannan R. The emerging role of senescence in ocular disease. Oxid Med Cell Longev. 2020; 2020: 2583601. doi:10.1155/2020/2583601
9. Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009; 28 (5): 348–68. doi:10.1016/j.preteyeres.2009.06.001
10. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008; 454 (7203): 428–35. doi:10.1038/nature07201
11. Chen M, Muckersie E, Forrester JV, Xu H. Immune activation in retinal aging: a gene expression study. Invest Ophthalmol Vis Sci. 2010; 51 (11): 5888–96. doi:10.1167/iovs.09-5103
12. Baudouin C, Renard JP, Nordmann J.P, et al. Prevalence and risk factors for ocular surface disease among patients treated over the long term for glaucoma or ocular hypertension. Eur J Ophthalmol. 2012; 11:0. doi:10.5301/ejo.5000181
13. Adornetto A, Russo R, Parisi V. Neuroinflammation as a target for glaucoma therapy. Neural Regen Res. 2019; 14 (3): 391–4. doi:10.4103/1673-5374.245465
14. Tezel G. The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp Eye Res. 2011; 93 (2): 178–86. doi:10.1016/j.exer.2010.07.009
15. Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014; 94 (4): 1077–98. doi:10.1152/physrev.00041.2013
16. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009; 32 (12): 638–47. doi:10.1016/j.tins.2009.08.002
17. Nakamura Y. Regulating factors for microglial activation. Biol Pharm Bull. 2002; 25 (8): 945–53. doi:10.1248/bpb.25.945
18. Luo C, Chen M, Xu H. Complement gene expression and regulation in mouse retina and retinal pigment epithelium/choroid. Mol Vis. 2011; 17: 1588–97. PMID: 21738388.
19. Carwile ME, Culbert RB, Sturdivant RL, Kraft TW. Rod outer segment maintenance is enhanced in the presence of bFGF, CNTF and GDNF. Exp Eye Res. 1998; 66 (6): 791–805. doi:10.1006/exer.1998.0488
20. Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC. Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2007; 48 (7): 3161–77. doi:10.1167/iovs.06-1282
21. Bosco A, Steele MR, Vetter ML. Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol. 2011; 519 (4): 599–620. doi:10.1002/cne.22516
22. Sapienza A, Raveu AL, Reboussin E, et al. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat. J Neuroinflammation. 2016; 13: 44. doi:10.1186/s12974-016-0509-7
23. Tribble JR, Harder JM, Williams PA, John SWM. Ocular hypertension suppresses homeostatic gene expression in optic nerve head microglia of DBA/2 J mice. Mol Brain. 2020; 13 (1): 81. doi:10.1186/s13041-020-00603-7
24. Oikawa K, Ver Hoeve JN, Teixeira LBC, et al. Sub-region-specific optic nerve head glial activation in glaucoma. Mol Neurobiol. 2020; 57 (6): 2620–38. doi:10.1007/s12035-020-01910-9
25. Bringmann A, Pannicke T, Grosche J, et al. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006; 25 (4): 397–424. doi:10.1016/j.preteyeres.2006.05.003
26. Vohra R, Kolko M. Neuroprotection of the inner retina: Muller cells and lactate. Neural Regen Res. 2018; 13 (10): 1741–2. doi:10.4103/1673-5374.238612
27. Toft-Kehler AK, Skytt DM, Svare A, et al. Mitochondrial function in Muller cells - Does it matter? Mitochondrion. 2017; 36: 43–51. doi:10.1016/j.mito.2017.02.002
28. Schneider M, Fuchshofer R. The role of astrocytes in optic nerve head fibrosis in glaucoma. Exp Eye Res. 2016; 142: 49–55. doi:10.1016/j.exer.2015.08.014
29. Lundgaard I, Osorio MJ, Kress BT, Sanggaard S, Nedergaard M. White matter astrocytes in health and disease. Neuroscience. 2014; 276: 161–73. doi:10.1016/j.neuroscience.2013.10.050
30. Shpak AA, Guekht AB, Druzhkova TA, Kozlova KI, Gulyaeva NV. Brain-Derived Neurotrophic Factor in patients with primary open-angle glaucoma and age-related cataract. Curr Eye Res. 2018; 43 (2): 224–31. doi:10.1080/02713683.2017.1396617
31. Nutma E, van Gent D, Amor S, Peferoen LAN. Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells. 2020; 9 (3). doi:10.3390/cells9030600
32. Cooper ML, Collyer JW, Calkins DJ. Astrocyte remodeling without gliosis precedes optic nerve axonopathy. Acta Neuropathol Commun. 2018; 6 (1): 38. doi:10.1186/s40478-018-0542-0
33. Cooper ML, Crish SD, Inman DM, Horner PJ, Calkins DJ. Early astrocyte redistribution in the optic nerve precedes axonopathy in the DBA/2J mouse model of glaucoma. Exp Eye Res. 2016; 150: 22–33. doi:10.1016/j.exer.2015.11.016
34. Chen M, Luo C, Zhao J, Devarajan G, Xu H. Immune regulation in the aging retina. Prog Retin Eye Res. 2019; 69: 159–72. doi:10.1016/j.preteyeres.2018.10.003
35. Sun D, Qu J, Jakobs TC. Reversible reactivity by optic nerve astrocytes. Glia. 2013; 61 (8): 1218–35. doi:10.1002/glia.22507
36. Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012; 32 (18): 6391–410. doi:10.1523/JNEUROSCI.6221-11.2012
37. Tezel G. Immune regulation toward immunomodulation for neuroprotection in glaucoma. Curr Opin Pharmacol. 2013; 13 (1): 23–31. doi:10.1016/j.coph.2012.09.013
38. Wei X, Cho KS, Thee EF, Jager MJ, Chen DF. Neuroinflammation and microglia in glaucoma: time for a paradigm shift. J Neurosci Res. 2019; 97 (1): 70–6. doi:10.1002/jnr.24256
39. Xu H, Chen M. Targeting the complement system for the management of retinal inflammatory and degenerative diseases. Eur J Pharmacol. 2016; 787: 94–104. doi:10.1016/j.ejphar.2016.03.001
40. Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med. 2014; 4 (8). doi:10.1101/cshperspect.a017269
41. Williams PA, Tribble JR, Pepper KW, et al. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener. 2016; 11: 26. doi:10.1186/s13024-016-0091-6
42. Tezel G, Yang X, Luo C, et al. Oxidative stress and the regulation of complement activation in human glaucoma. Invest Ophthalmol Vis Sci. 2010; 51 (10): 5071–82. doi:10.1167/iovs.10-5289
43. Tezel G, Fourth APORICWG. The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci. 2009; 50 (3): 1001–12. doi:10.1167/iovs.08-2717
44. Howell GR, Soto I, Zhu X, et al. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest. 2012; 122 (4): 1246–61. doi:10.1172/JCI61135
45. Margeta MA, Lad EM, Proia AD. CD163+ macrophages infiltrate axon bundles of postmortem optic nerves with glaucoma. Graefes Arch Clin Exp Ophthalmol. 2018; 256 (12): 2449–56. doi:10.1007/s00417-018-4081-y
46. Gramlich OW, Beck S, von Thun Und Hohenstein-Blaul N, et al. Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One. 2013; 8 (2): e57557. doi:10.1371/journal.pone.0057557
47. Jourdi G, Boukhatem I, Barcelona PF, et al. Alpha-2-macroglobulin prevents platelet aggregation induced by brain-derived neurotrophic factor. Biochem Pharmacol. 2023; 215: 115701. doi:10.1016/j.bcp.2023.115701
48. Rehman AA, Ahsan H, Khan FH. Alpha-2-Macroglobulin: a physiological guardian. J Cell Physiol. 2013; 228 (8): 1665–75. doi:10.1002/jcp.24266
49. Rolle T, Ponzetto A, Malinverni L. The role of neuroinflammation in glaucoma: An update on molecular mechanisms and new therapeutic options. Front Neurol. 2020; 11: 612422. doi:10.3389/fneur.2020.612422
50. Fabrizi C, Businaro R, Lauro GM, Fumagalli L. Role of alpha2-macroglobulin in regulating amyloid beta-protein neurotoxicity: protective or detrimental factor? J Neurochem. 2001; 78 (2): 406–12. doi:10.1046/j.1471-4159.2001.00419.x
51. Barcelona PF, Saragovi HU. A Pro-Nerve Growth Factor (proNGF) and NGF Binding Protein, alpha2-Macroglobulin, differentially regulates p75 and TrkA receptors and is relevant to neurodegeneration ex vivo and in vivo. Mol Cell Biol. 2015; 35 (19): 3396–408. doi:10.1128/MCB.00544-15
52. Shi Z, Rudzinski M, Meerovitch K., et al. Alpha2-macroglobulin is a mediator of retinal ganglion cell death in glaucoma. J Biol Chem. 2008; 283 (43): 29156–65. doi:10.1074/jbc.M802365200
53. Bai Y, Sivori D, Woo SB, et al. During glaucoma, alpha2-macroglobulin accumulates in aqueous humor and binds to nerve growth factor, neutralizing neuroprotection. Invest Ophthalmol Vis Sci. 2011; 52 (8): 5260–5. doi:10.1167/iovs.10-6691
54. Yucel Y, Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res. 2008; 173: 465–78. doi:10.1016/S0079-6123(08)01132-1
55. Weber AJ, Chen H, Hubbard WC, Kaufman PL. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci. 2000 May; 41 (6): 1370–9. PMID: 10798652.
56. Lam DY, Kaufman PL, Gabelt BT, To EC, Matsubara JA. Neurochemical correlates of cortical plasticity after unilateral elevated intraocular pressure in a primate model of glaucoma. Invest Ophthalmol Vis Sci. 2003; 44 (6): 2573–81. doi:10.1167/iovs.02-0779
57. Chidlow G, Wood JPM, Casson RJ. Investigations into hypoxia and oxidative stress at the optic nerve head in a rat model of glaucoma. Front Neurosci. 2017; 11: 478. doi:10.3389/fnins.2017.00478
58. Kaur C, Foulds WS, Ling EA. Hypoxia-ischemia and retinal ganglion cell damage. Clin Ophthalmol. 2008; 2 (4): 879–89. doi:10.2147/opth.s3361
59. Li S, Zhang A, Cao W., Sun X. Elevated plasma endothelin-1 levels in normal tension glaucoma and primary open-angle glaucoma: A meta-analysis. J Ophthalmol. 2016; 2678017. doi:10.1155/2016/2678017
60. Katargina L.A., Сhesnokova N.B., Arestova N.N., et al. Endothelin-1 level in the tear fluid of children with primary congenital glaucoma. Russian ophthalmological journal. 2023; 16 (1): 36–40 (In Russ.). doi:10.21516/2072-0076-2023-16-1-36-40
61. Pavlenko T.A., Kim A.R., Kurina A.Yu., et al. Endothelins and dopamine levels in tears for assessment of neurovascular disorders in glaucoma. Vestnik oftalmologii. 2018;134 (4): 41–6 (In Russ.). doi:10.17116/oftalma201813404141
62. Pinazo-Duran MD, Gallego-Pinazo R, Garcia-Medina JJ, et al. Oxidative stress and its downstream signaling in aging eyes. Clin Interv Aging. 2014; 9: 637–52. doi:10.2147/CIA.S52662
63. Chrysostomou V, Rezania F, Trounce IA, Crowston JG. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol. 2013; 13 (1): 12–5. doi:10.1016/j.coph.2012.09.008
64. Azbukina NV, Chistyakov DV, Goriainov SV, et al. Targeted lipidomic analysis of aqueous humor reveals signaling lipid-mediated pathways in primary open-angle glaucoma. Biology (Basel). 2021; 10 (7). doi:10.3390/biology10070658
65. Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010; 40 (3): 616–9. doi:10.1002/eji.200940168
66. Roh M, Zhang Y, Murakami Y, et al. Etanercept, a widely used inhibitor of tumor necrosis factor-alpha (TNF-alpha), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One. 2012; 7 (7): e40065. doi:10.1371/journal.pone.0040065
67. Iomdina E.N., Ignatieva N.Yu., Arutunyan L.L., et al. A study of collagen and elastin structures of the sclera in glaucoma usingnonlinear optical (multiphoton) microscopy and histology, a preliminary report. Russian ophthalmological journal. 2015; 8 (1): 50–8 (In Russ.).
68. Pena JD, Agapova O, Gabelt BT, et al. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure. Invest Ophthalmol Vis Sci. 2001 Sep;42(10):2303-14. PMID: 11527944.
69. Agapova OA, Ricard CS, Salvador-Silva M, Hernandez MR. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human optic nerve head astrocytes. Glia. 2001; 33 (3): 205–16. doi:10.1002/1098-1136(200103)33:3<205::aid-glia1019>3.0.co;2-d
70. Oh DJ, Kang MH, Ooi YH, et al. Overexpression of SPARC in human trabecular meshwork increases intraocular pressure and alters extracellular matrix. Invest Ophthalmol Vis Sci. 2013; 54 (5): 3309–19. doi:10.1167/iovs.12-11362
71. Robertson JV, Siwakoti A, West-Mays JA. Altered expression of transforming growth factor beta 1 and matrix metalloproteinase-9 results in elevated intraocular pressure in mice. Mol Vis. 2013; 19: 684–95. PMID: 23559862
Review
For citations:
Pavlenko T.A., Petrov S.Yu., Iomdina E.N. Neuroinflammation as a factor of pathogenesis of glaucomatous optic neuropathy. Russian Ophthalmological Journal. 2024;17(4):135-140. (In Russ.) https://doi.org/10.21516/2072-0076-2024-17-4-135-140