РЕШЕТЧАТАЯ ПЛАСТИНКА СКЛЕРЫ ПРИ ГЛАУКОМЕ: БИОМЕХАНИЧЕСКИЕ ОСОБЕННОСТИ И ВОЗМОЖНОСТИ ИХ КЛИНИЧЕСКОГО КОНТРОЛЯ
https://doi.org/10.21516/2072-0076-2018-11-3-76-83
Аннотация
Об авторах
О. А. КиселеваРоссия
Е. Н. Иомдина
Россия
Л. В. Якубова
Россия
Д. Д. Хозиев
Россия
Список литературы
1. Егоров Е.А., Астахов Ю.С., Еричев В.П. Национальное руководство по глаукоме. 3-е изд. Москва: ГЭОТАР-Медиа; 2015.
2. Quigley H.A. Glaucoma. Lancet. 2011; 377: 1366-77. doi: 10.1016/S0140-6736(10)61423-7
3. Волков В.В. Глаукома открытоугольная. Москва: МИА; 2008.
4. Burgoyne C.F., Downs J.C. Premise and prediction - how optic disc biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J. Glaucoma. 2008; 17: 318-28. doi:10.1097/IJG.0b013e31815a343b
5. Иомдина Е.Н., Бауэр С.М., Котляр К.Е. Биомеханика глаза: теоретические аспекты и клинические приложения. Москва: Реальное время; 2015.
6. Нестеров А.П., Егоров Е.А. Глаукоматозная атрофия зрительного нерва. Москва: Медицина; 1981.
7. Burgoyne C.F., Downs J.C., Bellezza AJ. et al. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005; 24: 39-73.
8. Quigley H.A. Glaucoma: macrocosm to microcosm the Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 2005; 46: 2662-70 doi: 10.1167/iovs.04-1070
9. Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol. 1981; 99: 635-649.
10. Downs J. C., Girkin C. A. Lamina cribrosa in glaucoma. Curr. Opin. Ophthalmol. 2017; 28(2): 113-9. doi: 10.1097/ICU. 0000000000000354
11. Abe R.Y., Gracitelli C.P. B., Diniz-Filho A. et al. Lamina cribrosa in glaucoma: diagnosis and monitoring. Curr. Ophthalmol. Rep. 2015; 3(2): 74-84. doi:10.1007/s40135-015-0067-7
12. Park S.C., Hsu A.T., Su D. et al. Factors associated with focal lamina cribrosa defects in glaucoma. Invest. Ophthalmol. Vis. Sci. 2013; Dec 30;54(13): 8401-7. doi: 10.1167/iovs.13-13014
13. Quigley H.A., Arora K., Idrees S. et al. Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes. Invest. Ophthalmol. Vis. Sci. 2017; 58(5): 2566-2577. doi: 10.1167/iovs.16-21321
14. Girard M.J., Strouthidis N.G., Desjardins A. et al. In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm. J. R. Soc. Interface. 2013; 10: 20130459. doi: 10.1098 / rsif.2013.0459
15. Jonas J.B., Mardin C.Y., Schlötzer-Schrehardt U., Naumann G.O. Morphometry of the human lamina cribrosa surface. Invest. Ophthalmol. Vis. Sci. 1991; 32: 401-5.
16. Sigal I.A., Ethier C.R. Biomechanics of the optic nerve head. Exp. Eye. Res. 2009; 88: 799-807. doi: 10.1016/j.exer.2009.02.003
17. Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol. 1981; 99: 635-49.
18. Anderson D.R. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch. Ophthalmol. 1969; 82: 800-14.
19. Бауэр С.М., Зимин Б.А., Товстик П.Е. Простейшие модели теории оболочек и пластин в офтальмологии. Санкт-Петербург: Изд-во Санкт-Петерб. ун-та; 2000.
20. Mabuchi F., Lindsey J.D., Aihara M., Mackey M.R., Weinreb R.N. Optic nerve damage in mice with a targeted type I collagen mutation. Invest. Ophthalmol. Vis. Sci. 2004; 45: 1841-5.
21. Quigley H.A., Addicks E.M. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch. Ophthalmol. 1981; 99: 137-43.
22. Hernandez M.R., Luo X.X., Andrzejewska W. Age-related changes in the extracellular matrix of the human optic nerve head. Am. J. Ophtahlmol. 1989; 107: 476-84.
23. Albon J. Age related changes in the non-collagenous components of the extracellular matrix of the human lamina cribrosa. Br. J. Ophthalmol. 2000; 84: 311-7.
24. Albon J., Karwatowski W.S.S., Avery N., Easty D.L., Duance V.C. Changes in the collagenous matrix of the aging human lamina cribrosa. Br. J. Ophthalmol. 1995; 79: 368-75.
25. Bailey A.J., Paul R.G., Knott L. Mechanism of maturation and aging of collagen. Mech. Ageing Dev. 1998; 106: 1-56.
26. Albon J., Purslow P.P., Karwatowski W.S., Easty D.L. Age related compliance of the lamina cribrosa in human eyes. Br. J. Ophthalmol. 2000; 84: 318-23.
27. Spoerl E., Boehm A.G., Pillunat L.E. The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera. Invest. Ophthalmol. Vis. Sci. 2005; 46(4): 1286-90.
28. Pena J.D., Agapova O., Gabelt B.T. et al. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure. Invest. Ophthalmol. Vis. Sci. 2001; 42: 2303-14.
29. Hernandez M.R. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 2000; 19: 297-321.
30. Tezel G., Hernandez M.R., Wax M.B. In vitro evaluation of reactive astrocyte migration, a component of tissue remodeling in glaucomatous optic nerve head. Glia. 2001; 34: 178-89.
31. Иомдина Е.Н., Арутюнян Л.Л., Игнатьева Н.Ю. Сравнительное изучение возрастных особенностей уровня поперечной связанности коллагена склеры пациентов с различными стадиями первичной открытоугольной глаукомы. Российский офтальмологический журнал, 2016; 9(1): 19-26.
32. Quigley H.A., Brown A., Dorman-Pease M.A. Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br. J. Ophthalmol. 1991; 75: 552-7.
33. Pena J. Elastosis of the lamina cribrosa in glaucomatous optic neuropathy. Exp Eye Res. 1998; 67: 517-24.
34. Иомдина Е.Н., Игнатьева Н.Ю., Арутюнян Л.Л. и др. Изучение коллагеновых и эластических структур склеры глаз при глаукоме с помощью нелинейно-оптической (мультифотонной) микроскопии и гистологии (предварительное сообщение). Российский офтальмологический журнал. 2015; 8(1): 50-8.
35. Tezel G., Trinkaus K., Wax M.B. Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes. Br. J. Ophthalmol. 2004; 88: 251-6.
36. Kirwan R.P., Crean J.K., Fenerty C.H. et al. Effect of cyclical mechanical stretch and exogenous transforming growth factor-beta1 on matrix metalloproteinase-2 activity in lamina cribrosa cells from the human optic nerve head. J. Glaucoma. 2004; 13: 327-34.
37. Agapova O.A., Ricard C.S., Salvador-Silva M., Hernandez M.R. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human optic nerve head astrocytes Glia. 2001; 33(3): 205-16.
38. Yang H., Downs С., Girkin C. et al. 3D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary sclera position and thickness. Invest. Ophthalmol. Vis. Sci. 2007; 48(10): 4597-607. doi:10.1167/iovs.07-0349
39. Yang H., Downs С., Belleza A., Thompson H., Burgoyne C. F. 3D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest. Ophthalmol. Vis. Sci. 2007; 48(11): 5068 -84. doi:10.1167/iovs.07-0790
40. Sigal I.A., Flanagan J.C., Tertinegg I., Ethier C.R. Finite element modeling of optic nerve head biomechanics. Invest. Ophthalmol. Vis. Sci. 2004; 45(12): 4378-87. doi:10.1167/iovs.04-0133
41. Sigal I.A., Yang Hongli, Roberts M. D., Burgoyne C.F., Crawford D.J. IOP-Induced Lamina Cribrosa Displacement and Scleral Canal Expansion: An Analysis of Factor Interactions Using Parameterized Eye-Specific Models. 2011; 52(3): 1896-907. doi: 10.1167/iovs.10-5500
42. Coudrillier B., Pijanka J.K., Jefferys J.L. et al. Glaucoma related changes in the mechanical properties and collagen micro-architecture of the human sclera. 2015; PLoS ONE 10(7): e0131396. doi:10.1371/journal
43. Downs J. C., Roberts M. D., Burgoyne C.F. The mechanical environment of the optic nerve head in glaucoma. Optom. Vis. Sci. 2008; 85(6): 425-35. doi:10.1097/OPX.0b013e31817841cb
44. Jonas J. B., Wang N. Cerebrospinal fluid pressure and glaucoma. J. Ophthalmic. Vis. Res. 2013; 8(3): 257-63.
45. Downs J.C., Roberts M.D., Burgoyne C.F., Hart R.T. Multiscale finite element modeling of the lamina cribrosa microarchitecture in the eye. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009: 4277-80. doi: 10.1109/IEMBS.2009.5332755
46. Sigal I.A., Grimm J.L., Jan N.J. et al. Eye-specific IOP-induced displacements and deformations of human lamina cribrosa. Invest. Ophthalmol. Vis. Sci. 2014; 55: 1-15. doi: 10.1167/iovs.13-12724
47. Sigal I.A., Yang H., Roberts M.D. et al. IOP-induced lamina cribrosa deformation and sclera canal expansion: independent or related? Invest. Ophthalmol. Vi.s Sci. 2011; 52: 923-32. doi: 10.1167 / iovs.11-8183
48. Иомдина Е.Н., Киселева О.А., Моисеева И.Н. и др. Биомеханические критерии оценки риска прогрессирования первичной открытоугольной глаукомы. Современные технологии в медицине. 2016; 9(4): 59-63. doi: 10.17691/stm2016.8.4.08
49. Аветисов С.Э., Бубнова И.А., Антонов А.А. Еще раз о диагностических возможностях эластотонометрии. Вестник офтальмологии. 2008; 124(5): 19-22.
50. Аветисов С.Э., Бубнова И.А., Антонов А.А. Клинико-экспериментальные аспекты изучения биомеханических свойств фиброзной оболочки глаза. Вестник офтальмологии. 2013; 5: 82-90.
51. Иомдина Е.Н., Петров С.Ю., Антонов А.А. и др. Корнеосклеральная оболочка глаза: возможности оценки биомеханических свойств в норме и при патологии. Офтальмология. 2016; 13(2): 62-8.
52. Ambrósio Jr. R., Ramos I., Luz A. et al. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol. 2013; 72 (2): 99-102. doi: 10.1590/S0034.
53. Dikici A. S., Mihmanli I., Kilic F. et al. In vivo evaluation of the biomechanical properties of optic nerve and peripapillary structures by ultrasonic shear wave elastography in glaucoma. Iran J. Radiol. 2016; 13(2):e36849. doi: 10.5812/iranjradiol.36849
54. Berg W.A., Cosgrove D.O., Dore C.J. et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012; 262(2): 435-49. doi: 10.1148/radiol.11110640
55. Sebag F., Vaillant-Lombard J., Berbis J, et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J. Clin. Endocrinol. Metab. 2010; 95(12): 5281-8. doi: 10.1210/jc.2010-0766
56. Lalitha P., Reddy M., Reddy K.J. Musculoskeletal applications of elastography: a pictorial essay of our initial experience. Korean J. Radiol. 2011; 12(3): 365-75. doi: 10.3348/kjr.2011.12.3.365
57. Huang D., Swanson E.A., Lin C.P. et al. Optical coherence tomography. Science. 1991; 254: 1178-81.
58. Fercher A.F., Hitzenberger C.K., Drexler W., Kamp G., Sattmann H. In Vivo optical coherence tomography. Am J Ophthalmol. 1993; 116(1): 113-5.
59. Knight O.J., Chang R.T., Feuer W.J., Budenz D.L. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Ophthalmology. 2009; 116: 1271-7. doi: 10.1016/j.ophtha.2008.12.032
60. Choma M.A., Sarunic M.V., Yang C.H., Izatt J.A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express. 2003; 11(18): 2183-9.
61. Inoue R., Hangai M., Kotera Y. et al. Three-dimensional high speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmology. 2009; 116: 214-22. doi: 10.1016/j.ophtha.2008.09.008
62. Spaide R.F., Koizumi H., Pozzoni M.C., Pozonni M.C. Enhanced depth imaging spectral-domain optical coherence tomography. J. Ophthalmol. 2008; 146: 496-500 doi: 10.1016/j.ajo.2008.05.032
63. Chien J.L., Ghassibi M.P., Mahadeshwar P. et al. A novel method for assessing lamina cribrosa structure ex vivo using anterior segment Enhanced Depth Imaging Optical Coherence Tomography. J. Glaucoma. 2017; 26(7 Jul.): 626-32. doi: 10.1097/IJG.0000000000000685
64. Adhi M., Liu J.J., Qavi A.H. et al. Enhanced visualization of the choroido-scleral interface using swept-source OCT. Ophthalmic Surg. Lasers Imaging Retina. 2013; 44: 40-2. doi: 10.3928/23258160-20131101-08
65. Omodaka K., Takahashi S., Matsumoto A. et al. Clinical factors associated with lamina cribrosa thickness in patients with glaucoma, as measured with Swept Source Optical Coherence Tomography. PLoS One. 2016; 11: e0153707. doi: 10.1371/journal.pone.0153707
66. Park H.Y., Jeon S.H., Park C.K. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012; 119: 10-20. doi:10,1016 / j.ophtha.2011.07.033
67. Naranjo-Bonilla P., Giménez-Gómez R., Ríos-Jiménez D. et al. Enhanced depth OCT imaging of the lamina cribrosa for 24 hours. Int. J. Ophthalmol. 2017; 10(2): 306-9. doi: 10.18240/ijo.2017.02.20
68. Park H.L., Park C.K. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Ophthalmology. 2013; 120: 745-52. doi: 10.1016/j.ophtha.2012.09.051
69. Yokota S., Takihara Y., Takamura Y., Inatani M. Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study. BMC Ophthalmol. 2017; 17(1): 57. doi: 10.1186/s12886-017-0456-9
70. Sawada Y., Hangai M., Murata K., Ishikawa M., Yoshitomi T. Lamina cribrosa depth variation measured by Spectral-Domain Optical Coherence Tomography within and between four glaucomatous optic disc phenotypes. Invest. Ophthalmol. Vis. Sci. 2015; 56: 5777-5784. doi: 10.1167/iovs.14-15942
71. Seo J.H., Kim T.W., Weinreb R.N. Lamina cribrosa depth in healthy eyes. Invest. Ophthalmol. Vis. Sci. 2014; 55(3): 1241-51. doi: 10.1167/iovs.13-12536
72. Lee S.H., Kim T.W., Lee E.J., Girard M.J., Mari J.M. Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma. Invest. Ophthalmol. Vis. Sci. 2017; 58(2): 755-62 doi: 10.1167/iovs.16-20802
73. Sousa D.C., Leal I., Marques-Neves C., Pinto F., Abegão Pinto L. Relationship between intraocular pressure and anterior lamina cribrosa depth: a cross-sectional observational study in a healthy Portuguese population. Eur. J. Ophthalmol. 2017; 27(3): 295-300. doi: 10.5301/ejo.5000867
74. Reis A.S.C., O'Leary N., Stanfield M.J. et al. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2012; 53: 5819-26. doi: 10.1167/iovs.12-9924
75. Vianna J.R., Lanoe V.R., Quach J. et al. Serial changes in lamina cribrosa depth and neuroretinal parameters in glaucoma: impact of choroidal thickness. Ophthalmology. 2017; S0161-6420(16): 32467-8. doi: 10.1016/j.ophtha.2017.03.048
76. Vianna J.R., Lanoe V.R., Quach J. et al. Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness Ophthalmology. 2017; pii: S0161-6420(16)32467-8. doi: 10.1016/j.ophtha.2017.03.048
77. Villarruel J.M., Li X.Q., Bach-Holm D., Hamann S. Anterior lamina cribrosa surface position in idiopathic intracranial hypertension and glaucoma. Eur. J. Ophthalmol. 2017; 27(1): 55-61. doi: 10.5301/ejo.5000806
78. Quigley H.A., Hohman R.M., Addicks E.M. et al. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am. J. Ophthalmol. 1983; 95: 673-91.
79. Roberts M.D., Liang Y., Sigal I.A., et al. Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Invest. Ophthalmol Vis. Sci. 2010; 51(1): 295-307. doi: 10.1167/iovs.09-4016
80. Wang B., Nevins J.E., Nadler Z. et al. In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2013; 54: 8270-4. doi: 10.1167/iovs.13-13109
81. Suh M.H., Zangwill L.M., Manalastas P. et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016; 123(11): 2309-17. doi: 10.1016/j.ophtha.2016.07.023
82. Kiumehr S., Park S.C., Syril D. et al. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Arch. Ophthalmol. 2012; 130: 552-9. doi: 10.1001/archopthalmol.2011.1309.
83. Hood D.C., De Cuir N., Blumberg D.M. et al. Erratum: A single wide-field OCT protocol can provide compelling information for the diagnosis of early glaucoma. Trans. Vis. Sci. Tech. 2017; 6(1): 2. doi:10.1167/tvst.6.1.2
Рецензия
Для цитирования:
Киселева О.А., Иомдина Е.Н., Якубова Л.В., Хозиев Д.Д. РЕШЕТЧАТАЯ ПЛАСТИНКА СКЛЕРЫ ПРИ ГЛАУКОМЕ: БИОМЕХАНИЧЕСКИЕ ОСОБЕННОСТИ И ВОЗМОЖНОСТИ ИХ КЛИНИЧЕСКОГО КОНТРОЛЯ. Российский офтальмологический журнал. 2018;11(3):76-83. https://doi.org/10.21516/2072-0076-2018-11-3-76-83
For citation:
Kiseleva O.A., Iomdina E.N., Yakubova L.V., Khoziev D.D. LAMINA CRIBROSA IN GLAUCOMA: BIOMECHANICAL PROPERTIES AND POSSIBILITIES OF THEIR CLINICAL CONTROL. Russian Ophthalmological Journal. 2018;11(3):76-83. (In Russ.) https://doi.org/10.21516/2072-0076-2018-11-3-76-83